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ABSTRACT

_p SECTION 1, a long-term strategy for the integration of new control technologies for
ower generation and delivery is proposed: the industry would benefit from an evolution-

ary approach that would adapt to its needs future technologies as well as those that it has

so far not heeded. The integrated operation of the entire system, including the distn_oution
system, has been proposed as a future goal. Control of new forms of generation will be
important. In transmission, the active control of power flow in response to system opera-
tional needs could be incorporated. New control technologies can play an important role.
Industry conservatism means that opportunities for research and development in the area

of overall system integration and optimal operation can justify government involvement.

In Section 2, the AbNET communication protocols are reviewed, and additions that
were made in 1991 are described. In the original network, traffic was controlled by polling

at the master station, located at the substation, and routed by a flooding algorithm. In a

revised version, the polling and flooding are modified. When a station receives a

generalized poll, it responds to the poll over the fiber that brought the poll to the station,

and repeats the poll on aH the other fibers. While this method is slightly less reliable than
a "pure" polling/flooding combination, it can lead to increases in the speed of the network.

A software simulation of the AbNET protocols, written to explore the effect of half- versus
full-duplex operation, is described. It can demonstrate the benefits of routing by flooding
in a damaged network. Hardware developed to allow PCs to demonstrate the protocols in
a fiber-based network is described.

In Section 3, the question of interfacing low-energy measurement transducers or
instrument transformers is considered. There is presently little or no agreement on what

the output of optical CTs should be. Some provide a digital output, others analog. Among

the analog ones, some give a low voltage out, others a small current. About the only thing

that does seem to be accepted is that low-energy devices will not attempt to reproduce
signals like the outputs of the high-energy transformers they replace. The requirements of
the interface are reviewed, and a method proposed whereby a standard could be developed.

Appendices deal with the calibration of current transducers (low-energy CTs must
be calibrated differently from conventional CTs); with Delta modulation, a simple means
of serially encoding the output of an OCT; and with noise shaping, a method of digital
signal processing that trades off the number of bits in a digital sample for a higher number

of samples.
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PREFACE

HIS REPORT, like the one written a year ago, contains material on a number oftopics. The report covers long-term prospects for system integration, advances in the
AbNET communication protocols, and interfacing low-energy measurement transducers.
A word or two about how each of these different parts came to be in this report is in order.

Section 1 is a revised version of a paper written for a planning workshop organized
by the U.S. Department of Energy that took place in November. The invitation to con-

tr_ute required a broad look at the future of the industry, an exercise that I had not found
time to indulge in for some while. Perhaps I had fallen into a habit that I think many
engineers have, of concentrating on the details and not seeing the big picture. In any event,
here was an opportunity to speculate on the long-term outlook for the power industry. The

material in the report has the benefit of having been presented and discussed at the
workshop, and includes improvements resulting from that process.

Section 2 is a summary of the advances made in the AbNET protocols during 1991.

Conceptually, the network is improved in performance by a revised flooding/polfing
approach. Practically, the hardware for a demonstration in our laboratory is ready. A soft-
ware simulation of the network was undertaken, in the first place, to study the impact of

operating half duplex, instead of the full duplex originally planned. The simulation is very
detailed. It became apparent that, with the investment of some effort, it could be used to

explore many of the features of the AbNET protocols. This was done, and is described.

I have been considering the question of interfacing low-energy measurement trans-

ducers for some while, as chairman of the Fiber Optic Sensors Working Group of the Fiber

Optics Subcommittee of the Communications Committee of the Power Engineering Society

of IEEE. I pulled together some of my correspondence on the subject for a class on fiber

optics that I helped teach at the Technical University of Denmark in the summer. Section

3 of this report builds on that material, and contains much that is new. The appendix on

the calibration of optical current transducers is entirely new.
Much of the material is opinion, rather than scientific observation. Rather than write

in the conventional passive third person of scientific prose, and thereby give the impression

that the weight of science is behind the sentiment expressed, I have elected to write these

parts of the report in the first person. This style seems to suit the essay nature of the first
and third sections of the report.

HAROLD IORKHAM

PASADENA, CALIFORNIA

DECEMBER 1991
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SECTION 1

LONG-TERM PROSPECTS
FOR INTEGRATED SYSTEM OPERATION

LECTRIC POWER SYSTEMS have been in existence for over 100 years. During this
time, there has been enormous growth in their size and complexity. Yet as we ap-

proach the 21st century, the way power systems are operated--both from the technical and

the philosophical viewpoint---differs little from the way they were operated in the 19th!

Apart from the very occasional use of a dc line, the hardware of a modern power system

is only a scaled-up version of the earliest ac power systems. Control of the bulk system is

centralized, always involving an operator. The protection system operates autonomously,

with no reliance on human intervention. Wherever possible, operation avoids reliance on

a communication system.

The industry has been characterized by slow but steady growth of the system. It has

been possible to evolve new components as they became needed. For example, as the load

grew, the economy of scale led to the need to locate generators some distance from the

loads. Interconnection at higher voltages was justified, requiring the development of

components that could operate at ever higher levels. Ultimately, components with basic

impulse insulation levels (BIL) of millions of volts were developed.

A side effect of this approach of developing new solutions out of old has been a

reluctance in the power industry to embrace new technology. This conservatism is often

justified as prudent, based on reliability and safety concerns. It is a thesis of this report that

one result of this kind of growth is that the industry has become stagnant. It may not be

an exaggeration to say that compared to some technologies, the power industry is outmoded,

that the best available technologies are not being used.

Perhaps sensing this, and aware of the importance of the electricity industry to the

nation, the U.S. Department of Energy (DOE) has for some while been funding long-term

research in the field of electric power systems. In November 1991 the Department held a

workshop aimed at providing guidance for planning the direction of this research. This

section of the report is based on a paper prepared for the DOE workshop. It includes most

of the material in the original paper, and additional material written since the paper was

presented to clarify or expand upon some particular point.

It is clear that there is room for improved application of technology. A software



example was presented at the workshop by Patton, Whittier and Walk (1991), based on a
survey (Control Center Survey, 1990) of the largest 300 utilities in the country by EPRI
(Electric Power Research Institute). Of the 300 utilities, 30% do not have SCADA (Super-
visory Control and Data Acquisition). System operators can have only a limited view of
how the power system is performing. Of the 70% that do have SCADA, only a third can

perform load flows in the control center. It is unlikely the power systems of the other two-
thirds can be operated even close to maximum efficiency. In terms of hardware, one
particular example springs to mind. Current measurement systems that have evolved out
of century-old iron-cored transformer technology are prone to explosive failure in high-

voltage applications. Optical and electronic current transducers that do not have this
problem have been available for some years, yet they are hardly being used.

There is a large gulf between the state of the art and the state of the industry, clear
evidence of industry conservatism. This is not the optimal response. The operating

capability that had evolved as generation and load became geographically separate was
unable to prevent instabilities in the system that blacked out a large part of the North-

east--twice within the space of just a few years.

It might seem that these examples are evidence against an evolutionary approach.

They are not. In fact the opposite is true. It is argued below that evolutionary thinking is
important in any endeavor to look at the long term future of the industry. It is the intent

of this section to examine the general principles, and find some illustrative examples.

Evolution, as a means of moving forward, can be a very fruitful approach.

The notion of evolution in the biological sense as formulated by Darwin had its
origins in the work in economics of Adam Smith. In The Panda's Thumb Stephen Jay

Gould (1982) wrote that

[Darwin's] theory of natural selection is a creative transfer to biology of Adam
Smith's basic argument for a rational economy: the balance and order of nature does
not arise from a higher external (divine) control, or from the existence of laws
operating directly upon the whole, but from struggle among individuals for their own
benefits.

The external control that seemed to Darwin's critics to drive species toward

perfection is replaced in biology by something analogous to Smith's "unseen hand."
In the 1990s, evolution seems to be better understood than economics: in a reversal

of history, it is therefore suggested that a deliberately evolutionary approach makes sense

applied to the marketplace. In either field, economics or biology, the existence of a

mechanism for change (technical modification or gene mutation) combined with a mechan-
ism to test the merit of change (market acceptance or survival of the fittest) creates a
situation in which improvements tend to survive and prosper. As a result, evolution is a
mechanism for adapting to changing circumstances in the multi-variable real world. Planned
solutions in this environment are doomed to failure--as shown by the demise of the Soviet
Union.

Change, variety and competition are essential ingredients. Evolution proceeds by a
sort of shotgun effect: random mutations are introduced into a population. The fittest
survive, and represent successful adaptations; the least fit die, and presumably disappear
from the gene pool. Thus evolution can create the impression of progress. In the field of
power systems, reluctance to change and reluctance to test the merit of changes have tom-
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bined to suppress innovation. Innovations that have taken place at an increasing pace in

many technologies have by and large been ignored in power system control. The relay that

caused the 1965 Northeast Blackout differed in no significant respect from the relays in use

in, say, 1915. For this industry, evolution has evidently stopped. There is the impression of

no progress.
If things are to change, if new technologies are to be adopted and adapted, evolution

provides a strategy for testing them. It is futile to attempt to predict a 30-year future: the

science of chaos tells us that a small change in the starting conditions of something as

complex as the future of this industry can have far-reaching and unforseen consequences.

Complex non-linear systems are unpredictable in the long run. Consider two examples from

the industry's past. How far in advance could the use of digital relays have been foreseen?

When did optical measurements seem feasiblemand when will they be commonplace?

It is similarly impossible to predict just when some of the technical advances that are

bound to affect the industry will be important. The best we can hope to do is to recognize

the relevant advances when we see them, and be ready to incorporate them as appropriate.

This section of the report is aimed at uncovering some possibilities.

1.1 Overview

Any suggestion for change must recognize that there exists a large investment--both

financial and intellectual--in the system we have evolved. This system must be our starting

point for further development. The challenge is to chart a course from the present state

of the art to a future state improved by greater use of advanced technology.

This section of the report will begin with a review of the reasons (economic) that the

industry is so conservative, and then investigate the technology by examining current

practice and the R&D possibilities in power system control. The technology will be

discussed according to the following breakdown:

Distr_ution and utilization

Transmission

Generation

Measurement and control

The section finishes by examining institutional impacts, the prospects for the future,

and the appropriateness of government involvement. Technology transfer approaches for

the integration of new technology are described.

1.2 Electricity Industry Economics

Textbooks on economics introduce the notion of market structure by means of typical firms

and perfect competition. The typical firm long-run unit cost/output curve is U-shaped. At

low outputs, startup costs and low utilization of investment mean that there is an economy

of scale: higher output would result in lower average costs. At high outputs, there are

diseconomies of scale (greater use of input resources may drive up those prices; an extra

shift may be needed): long-run average cost increases as output increases. Although it can

3



be argued that few real firms have cost curves of exactly this shape, the model is a useful
tool for explaining the role of the market.

A firm is described as a price taker if the prices of its inputs and outputs are

determined by forces outside its control. The price taker not only treats costs and prices
as fixed, it also regards them as being the result of markets that are in equilibrium. That

is, all the other companies that are in competition in the market have already made their

managerial decisions, and these will not be affected by decisions made by the price taker.

In some regards, the perfectly competitive market is rather like an infinite bus. This
theoretical perfect competition is characterized by a large number of small firms, a homo-
geneous product, well informed buyers and sellers, and ease of entry and exit from the
market. (Actually, easy entry and exit from the market are important only to ensure long-
term equil_rium.)

Perfect competition is paradoxical. Since all firms are price takers, and the market
is in equih_orium, there is no reason to compete for market share! Inter-firm rivalry has no
place under conditions of perfect competition. The reason is simple enough: since the

products are homogeneous, innovation in the product brings no benefit. There is nothing
to be gained by improving efficiency, either. If one firm were able to increase its
profitability by reducing manufacturing costs, the other well-informed firms would follow

suit, or other firms would enter the market.
Even if it is unrealistic because it ignores the dynamics of competitive advantage, the

idea of perfect competition is useful to examine the question, What should be the output
of the firm in order to maximize the profit? Figure 1-1 shows the cost and revenue curves

as a function of output for a typical price taker. (The revenue curve is, of course, linear,

since the price of the product is fixed. This means, in turn, that the concept of price
elasticity has no place here.)

Figure 1-1
Cost and revenue curves

for a price-taking firm

Output (units)

In Figure 1-1, the firm's total cost curve is shown with a reverse-S shape. This is

typical of operations that are subject to the law of diminishing returns. Beyond some

output, short-run total costs will increase more than in proportion to the output. Obviously,

profit is maximized at the output corresponding to the greatest separation between the cost
curve and the revenue curve. This is most easily seen by differentiating the data of

Figure 1-1 with respect to the output, as shown in Figure 1-2.

Figure 1-2 shows that the point of maximum profit, which can be seen in Figure 1-1
to occur at about 85 units of output, corresponds to the point at which the slope of the total

eost curve is equal to the slope of the total revenue curve. The slope of the cost curve is

known as the marginal cost. Profit is maximized when the marginal cost is equal to the
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revenueper unit, or price. (Note also that this curve doesnot disclosewhen a firm goes
from lossto profit, only when profit is maximized.) The goal of matching marginal cost and

marginal revenue becomes a general rule.

Figure 1-2
Per unit cost and revenue curves

for a price-taking firm
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In practice, few markets fit the model of perfect competition. Certainly, the electric

utility industry does not. It comes closer to the model of a natural monopoly. For a natural
monopoly, total costs are minimized by having just one producer supplying the entire

market. There is always an economy of scale: the U-shaped curve does not apply. Total
costs consist of fixed costs (such as capital items) and variable costs that always decrease
as output increases. The utility can say, with some justice, that it is inherently wasteful for
a competitor to install duplicate lines to serve some fraction of the customers.

Because it can be argued that costs would rise if there were competition, the utility

is permitted to operate as a monopoly, but with government regulation. The problem facing
the regulators charged with this duty is how to decide the manner in which this regulation
should take force. Figure 1-3 shows the standard solution in the U.S.

Figure 1-3
Cost and revenue curves

for a natural monopoly
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It will be noticed that these curves include a line for demand, which was not the case

under perfect competition. As a monopoly, the utility would prefer to operate, as expected,
where the marginal cost and the marginal revenue are equal. At this point, the demand

(output) is quite small (about 30 units in Figure 1-3) but the price (from the demand curve)

is satisfyingly high (a little over 100 units in the Figure). Because the price "is so much
higher than the cost, and because there seems to be a large unsatisfied demand, this

operating point does not suit the power industry regulators. (Under perfectly competitive

conditions, this profitability would attract other firms. In a natural monopoly situation, it
is argued that since capital investment would have to be duplicated, competition would
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simply drive up the price.) A goal of regulation is to come reasonably close to the point
at which the demand curve and the marginal cost curve intersect, about 65 units in

Figure 1-3. The price and the marginal cost curve are then equal, a much greater demand
is being satisfied, and the regulator can feel comfortable.

Unfortunately, the long-run average cost exceeds this price, and the company would
eventually sustain a loss. They would prefer a higher price. The intersection of the long-
run average cost curve and the demand curve seems like an acceptable compromise, and

is usually the target.
Practically speaking, the regulators have no real insight into the shape of the demand

curve, nor is the position and shape of the cost curve accurately known. An indirect method
of regulation is therefore used. But with so much unknown, how is this achieved?

The answer lies in the rate of return the company earns. If the price is above the
long-term cost, the company can earn a higher rate of return than might seem reasonable
to a zealous regulator, and vice-versa. So the goal of regulation is achieved by letting the

utility rate of return be similar to the rate of return in other industries. _ With this solution,
the exact shape of the cost and demand curves need not be known.

First, the amount of capital (on which the return is being earned) is calculated. In
the electric utility business, this amount is known as the rate base. Next, the average rate
of return for the economy is estimated. These numbers allow the permitted profit to be
calculated. The utility is then instructed to develop a tariff schedule that will create this

amount of profit. Fine tuning of the schedule is permitted after the regulations go into
effect, since external factors could upset the assumptions underlying the calculations.

The regulation process has defects built into it. If the utility management permits
costs to rise, they can be sure profits will not suffer. They have none of the usual incentives

of company management. Worse, there is a temptation to expand the rate base to increase
total return. Under the usual rules, a new office building contributes to the rate base even

though it does not generate electricity. Further, the utility is tempted to behave as a price
taker, because the rates are all beyond its control. (And in support of the argument that

the industry has been somnolent, remember that price takers have no need of innovation.)
The problem is not simple to solve, and the commissions are faced with an even

more difficult problem than the one outlined here because, in the real world, economic
factors are not time-invariant. If costs rise faster than rates (and rates can only rise when

permitted by the infrequent meetings of the commission) the utility will be short of funds.
They might seek to add a "pass-through" clause to the tariff. In an entrepreneurial,

competitive market, the right response is often innovation. In the regulated, protected
world of the utility, short of money because of regulatory lag, innovation does not stand a
chance. It is not difficult to see why this industry has stopped evolving.

Because of these defects, many economists are critical of the utility commissions, and

some doubt whether regulation really works to the advantage of the consumer. Ronald
Coase, winner of the 1991 Nobel prize for economics, has written extensively on the

regulation of industry. He has shifted attention from the operation of regulation under
ideal conditions to an examination of regulatory institutions as their structure and effects

actually exist. He wrote "It is now generally accepted by all students of the subject that

tin the recently-privatized electricity industry in Britain, the price--rather than the rate of

return--is regulated. It remains to be seen how successful this strategy will be.

6



most (perhaps almost all) government regulation is anticompetitive and harmful in its

effects." (Dolan, 1977)

The industry conservatives have in the past used the Commissions' restrictions and

the stockholders' reluctance as excuses for the lack of innovation, but these are not the root

cause. It is a simple result of regulated economics. By this observation, it is not intended

to attach any implication of wrongdoing to the utilities. It was recently written

They have not been short-changing customers in a deliberate attempt to ramp up

profit margins: most are state-owned companies with no incentive to be so aggressive.

They have simply been behaving as monopolies customarily do---shelving (or feigning)

avoidable innovation, ducking investment risk wherever possible and keeping a beady eye
on their own convenience rather than the customer's.

(The italics in the quote are mine.) This was in a survey of telecommunications (not

electric utilities) in The Economist (Survey of Telecommunications, 1991). The discussion

was of why many European telephone companies have used fake touch-tone phones (that

generate rotary-type pulses instead of the beeps that we hear) to avoid the expense and

effort of replacing their central-exchange equipment.

The utility regulation situation is changing. Legislation introduced at the federal

level over the last decade or so is beginning to have impact at the state level, where the

electric utility regulations are devised and enforced. The first set of legislation, the Public

Utilities Regulatory Policies Act (PURPA) of 1978, forced the utilities to accept electric

power from generating equipment owned by qualifying facilities. It also obliged the utilities

to pay for this energy at a price called the "avoided cost." The intent was to facilitate the

connection of small power producers, preferably based on renewable resources. To some

extent this has worked, but there have been some unexpected results.

Utility opposition has made it difficult for truly small facilities to eonneet. Large

power producers, typically industries with cogeneration, have the resources to overcome the

opposition. Second, PURPA left open the question of what was meant by avoided costs.

Interpretations that are applied on a statewide basis, even in states served by several

utilities, can be unfair. This means that in New York State, for example, avoided cost is
defined to be the same in the Adirondacks as it is in lower Manhattan.

The overall result has a bad side and a good one. The effect has been to put many

utilities in a situation where they are obliged to buy power they might not need. And the

degree of uncertainty in the utility planning process has become greater. On the other

hand, an increasing fraction of the electric energy needs of the country is met by non-utility

generation (NUG). According to one forecast, the utilities plan to add 71,600 MW of

capacity between 1991 and 2000, and in addition anticipate purchasing 26,000 MW of new

NUG power (Annual Forecast, 1991). And PURPA has certainly put downward pressure
on the level of avoided costs.

There is now talk of making the transmission system open to all. I noted above the

similarity of the model of perfect competition to the infinite bus. Any amount of power can

be added to an infinite bus without changing its voltage or frequency. To a small generator,

a real transmission system has the same appearance. But the effects are felt on the

transmission system. With regulations changed to force utilities to accept power inputs they

do not need, they will have to consider power flows that were not anticipated when their

bulk systems were built.
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Other deregulatory changes might be considered. It may be poss_le for a customer
to contract with a utility in another state, and have his local utility deliver the power, in the
way a local telephone company delivers a competitor's long-distance service. Operation in
this fashion would represent a radical change in the way the industry operates. The

technical and institutional barriers to deregulating to this extent will be explored in greater
detail later in this section.

The utilities are facing an era of change and uncertainty. They seem not to like it.

1.3 Review of the PossibiliUes

If economics and regulation have stifled "market pull" for technological advancement,

perhaps it is time to see what is available from the "technology push" point of view. There
are many opportunities for technological advance, but this report concentrates on one area,

power system control. (The reader might view the outcome as one of the random variations
that are the raw material of evolution. Whether the ideas will make sense over, say, the

next 30 years has yet to be determined.) The various parts of the power system will be
examined from the point of view of real-time control, with emphasis on integrating the oper-
ation of all parts of the system. The main elements of real-time control are the ability to

• monitor essential parameters,
• locally process and
• communicate this information to control points,

• analyze the data,
• decide on a control response,
• transfer this decision to remote control devices, and

• all of this quicMy enough to be useful.

The starting point for discussion is the assumption that performing this real-time
control for the entire system can improve both the performance and the economics. In
order to accomplish this end, improvement will be needed in one or more of these aspects
of control in most parts of the power system. The discussion begins with an excellent
example of neglect, from the control point of view: the distribution system.

1.3.1 Distribution and UUlization

Most of the revenue of a utility is obtained through the distribution system, and about half
of the capital investment of the company is in this part of the system. 70-75% of all losses
and 90% of all outages are attributable to the distribution system. Yet its operation is the
least monitored and controlled of all. Further, lack of understanding of the toad is

ultimately the cause of certain instabilities that have been observed on the transmission
system. There are thus both local and global arguments in favor of better knowledge and
control of the distribution system.

There are many functions that could be controlled in the distribution system (for a

list, see Distribution Automation, 1988), but since the distribution system "works" in its
present condition, utilities have been unwilling to invest in the necessary monitoring hard-



ware or the communication system needed to implement automation. Anyway, how would
they make use of the data? The effect has been that, apart from a few (subsidized)
demonstrations of the technology, there are no commercial applications of distribution
automation.

The necessary monitoring and communications technology is available today, at

reasonable cost. For monitoring and control of the system itself, UHF radio communi-

cations, operating with carrier frequencies above 800 MHz, can be used (Holte, 1989). No

modifications need be made to the distribution system, other than the addition of the RTU
(remote terminal unit) and radio system. Capital costs are probably in the order of $2000
per RTU site. If two RTUs are installed every kilometer for feeder automation, the cost

represents about a 12% increase in the cost of the typical 12-kV distn_oution circuit.

(Applied to the whole power system, this would represent a not insignificant 6% increase
in the capital investment of the utility. An advantage of work in the distribution system is
that it can usually be performed piecemeal, as need arises or as funds become available.)

If access to more points is needed, for example for meter reading or load
management, a fiber optics system can be used. Fiber systems also tend to have very much
greater bandwidth than UHF radio systems, and so can support applications that require
speed. (The AbNET system discussed in section 2 of this report was specifically designed
for the distribution system, and is the ideal candidate.) The cost of the fiber is alone likely
to be about $3000/km, but inexpensive RTUs make the total system cost competitive in
high-density applications (Kirkham, Friend, Jackson and Johnston, 1990).

It is still difficult to make a convincing case that the expenditure will be economically

justified. While some advocates have claimed that one single function of the set collectively

known as distribution automation can pay for the entire system (see, for example, Kendrew

and Marks, 1989), such claims seem to be exaggerated (Kirkham, Johnston and Friend,
1989). Both DOE and EPRI have funded work aimed at obtaining realistic cost/benefit

data. This approach should be continued.
Since the number of functional applications is large, and there is a continuing need

to accommodate changing technology, it is argued that applications can be most effectively

developed in the evolutionary, competitive marketplace. But there is still considerable
potential here for the government to be involved. The work of developing applications is
very much in its infancy. There is a need for standards--in data representations, in
interface definitions--that can best be developed with the involvement of the utilities, the

professional societies, and the DOE. EPRI, who could be expected to represent the
utilities, has stated that standards follow practice, and that EPRI is not in the business of
defining standards. 2 The standards that are needed, by defining what could become product

boundaries, would speed development, and help promote competition.

In order for distribution automation to be considered as an integral part of power

system operation, its impact on existing centralized planning and control strategies must be
considered. First, consider the monitoring aspects of distribution automation. At present,

the SCADA system makes available in the control center information about the power

outputs of the generators and the power flow on the transmission lines. At a substation that
serves a load, the load will be measured, typically as the power flow into a transformer.

2It is not clear how their recent endeavors at promoting the Utility Communication
Architecture--UCA--fit this philosophy.



There is sufficient information to perform a load flow calculation. But the load is modelled

in some way that, although based on experience, may not be accurate. The assumption of

constant real and reactive power (as a function of voltage) is usually regarded as

conservative. But it may not be. If the voltage on the transmission system is low, perhaps

because of equipment failure, the automatic voltage regulators on the load side of the

transformers may act to hold the secondary voltage constant. If the high-side voltage is then

increased, the load will actually be higher (for the same primary voltage) than before. This

kind of interaction between the bulk system controls and the distr_ution system controls

is rather unpredictable, because so little of the action of the low side is monitored. There

is an opportunity here for coordinated (global) control.

As an example of an unusual (local) control approach, consider a study in the United

Kingdom (Black, Formby and Walker, 1985) that showed that 60% of switching operations

on the ll-kV system were for the purpose of isolating other similar equipment for main-

tenance, and 20% were post-fault operations made to identify the faulted section (rather

than to isolate it). Each of these operations required a site visit, and was considered costly

and time-consuming. The use of switchgear that could only be operated with the system

deenergized, but that could be remotely operated, was estimated to result in a capital

savings of about 30% in the replacement of life-expired switchgear. The automation

hardware was estimated to cost less than this amount.

Although justified because it is economically attractive, this approach represents a

new philosophy of operation: shut down the entire feeder--for a momentmin order to do

switching. Once the poss_ility of a different way of operating the system is accepted, other

opportunities will probably become apparent. More complex (non-radial) configurations

might be considered, or single-phase switching. Studies of this kind of development may

be justifiably government funded, since they are unlikely to be undertaken otherwise.

Utilization has been scarcely mentioned in this report so far. Since the concentration

is on control, the discussion will be restricted to consideration of ways we can control

utilization to be of value in operating the power system, and ways we can affect utilization

to benefit the customer.

In the category of improving power system operation, of course, are the various kinds

of demand-side management (DSM). Some customers are willing to be denied the use of

some of their loads for some of the time, in return for lower rates. The advantage to the

utility is the ability to "shave the peak" load and thereby defer capital expenditures. (Note

that peak shaving can apply both to system peaks and local load peaks.) As useful as this

is, it does not go far enough, and it is usually limited by the communications system to very

coarse control.

Typically, controlled loads are turned off for so many minutes in the hour. A better

approach, and one that avoids problems when many loads are turned on together, would

be to change the set-point of controlled loads. The temperature settings on air-conditioner

thermostats could be increased when it is necessary to reduce load. This requires a more

sophisticated control and communication system than is presently used for DSM, but it fits

with a future in which loads are increasingly automated. (One might note in passing that

an opportunity that seems largely to have been missed is to use brute-force load

management as an adjunct to load-shedding for stability control.)

The other side of DSM is the improvement of the service offered to the customer.

With improved monitoring, it would be possible to inform the customer of not only the

amount of electricity used during the billing period, but also the appliances that used it.
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This sort of information has not been made available before, so its uses are speculative.

But would it not be useful to know, for example, whether the refrigerator were suddenly

using more energy? Is it really economical to buy that half-a-sheep, and pay the energy bills
for the deep-freeze, or would it be cheaper to buy the meat from the butcher? One of the
conservation measures frequently advocated is the use of compact fluorescent lights, instead
of incandescent. It should be possible to show the savings to the customer, in a convincing

way. Likely, the word would spread, making this kind of conservation more widely

practiced.

For decades the utility has provided electric energy with its frequency sufficiently
weU-controlled that it can be used for time-keeping. This accuracy arises out of the fact
that frequency is used as an indication of the balance between generation and load. No

extra charge has ever been made for this feature, and most customers have come to count
on it.

With the increasing use of solid-state clocks, it becomes poss]%le for a utility to offer
additional services. For a small charge, clocks can be reset following power failures, for
example. Using the power-line secondary as a local area network, the utility could offer
security services: lights could be turned on and off, and curtains moved to simulate

occupancy of a house; load monitoring could detect after-hours use of commercial or
industrial facilities.

The utility of the future might think of itself not as a supplier of energy, but as a

supplier of services. With adequate communications, and increasing use of automatic
control, there may be a large number of revenue-earning services that can be offered.

1.3.2 Transmission

Per unit of power handled, the transmission system is the least capital-intensive part of the
power system. Over the years, the cost of transmission line losses has been traded-off

against the capital cost of improving efficiency, and effective computer programs for optimal
line design are available.

The basic problem facing both operator and planner these days is to get more power

down a given corridor, without sacrificing reliability or efficiency. For cost reasons, most
transmission lines are ac, and for historical reasons they are mostly three-phase. Techniques
for increasing the capacity of a line include adding compensation, reconductoring, converting
to a higher phase-order and converting to dc. All these approaches are well understood

(some of them having been the beneficiaries of past government funding), and research in
them is scarcely needed.

New methods of operating the transmission system may be needed if the "open

access" policy that is now being discussed becomes a reality (see Section 1.3.5 below).
Existing transmission systems have generally been designed to solve very specific problems,
delivering power from the utility's generators to the utility's loads. The use of this kind of
system as a general purpose power-wheeling facility is bound to cause difficulties both in
planning reinforcements and extensions, and in operation.

More widespread use of dc might help. The concept of adding a parallel dc circuit

with active stability control is over two decades old (Dougherty and Kirkham, 1970). That
work was based on the notion of adding a derivative term to the equations of motion of the
power system. (Normally, a power system is characterized by a set of non-linear second
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order equations in which the coefficients of the first order terms are zero.) However, the

idea of adding a new dc line sized and controlled specifically to stabilize the parallel ac

system (rather than to carry power itself), may be new?
For reasons of transient stability, it is preferred that power lines are operated with

power-angles less than 30 °. This means that the power transmitted is limited to 0.5

(sin 30 ° ) of the maximum power that could be transmitted. In fact, many lines are loaded
to a greater extent than this, though not without a certain nervousness. If the operating

angle is increased to (say) 45 ° the transmitted power is increased by 40%, but the system
is closer to the stability limit. It would be desirable to design a control to allow this

increase in power transfer without its concomitant loss of stability margin. In essence, there
would be an increase in the transient stability limit, at the cost of some control. The

concept is at least worthy of study. The first question is how large must the dc system be
in order not to degrade the stability of the system, and how much would this cost compared

to reinforcing the ae system. The second, and more difficult question is how to control such

a complex non-linear system.

1.3.3 Generation

In most utilities, power is generated by a mix of energy sources. The control (scheduling,
dispatching) of these is well understood. An increasing amount of non-utility generation

(NUG) is now being connected to the utilities' power delivery system. Section 210 of the
Public Utilities Regulatory Policy Act (PURPA) encourages renewable resource generation,

and obliges utilities to buy the power produced by Qualifying Facilities (QFs). There is also

a competitive bidding process whereby utilities can invite Independent Power Producers

(IPPs) to build generation facilities in a competitive fashion.
The DOE has already invested considerably in R&D on the integration of new-

technology generation. Much of that work, which was done in the last decade, was
concerned with small generators and relatively low penetration into the power system.

Recently there has been a trend for quite large eogeneration facilities to connect to utilities'
networks, in some instances requiring the construction of new transmission lines. It may
be worthwhile to review the earlier work with a view to its applicability to large IPPs.

Since non-utility generation is a relatively recent phenomenon, brought about by

regulatory action, the industry has not had time yet to evolve a strategy for dealing with it.
Some utilities, obligated by the terms of PURPA 210, feel that the law benefits only the QF

operator. Apart from the question of proper pricing for "avoided costs," it seems
reasonable that large 1PPs should be integrated into the utility planning and operation
strategies to a greater extent than is now required by the law. Integrated control of the

system may make it necessary in the future for the utility to be able to exercise more control

(and more flexible control) over QFs than is presently usual.

_rhere are analogies in aerospace. At least one Soviet fighter has been observed at the Paris Air
Show to be capable of pulling up its nose and increasing the angle of attack on the wings to the
point of stall and beyond (so far, in fact, that the tail of the aircraft is actually ahead of the nose)
while maintaining level flight. And the well-known Harrier vertical take-off plane is known to be
unstable without its computer control system.
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1.3.4 Measurement and Control

Real-time control involves the communication of information to one or more control points,

where control action is decided upon. The first part of this is the measurement itself.
It was noted earlier that current transformers built for high voltage use had

problems. In defence of the evolutionary approach by which such devices were developed,
it is pointed out that evolution offers no guarantee that useful adaptations will continue to
be adaptive in changed circumstances. What works well at 500 V may not work at 500 kV.

The world of power system measurements could be revolutionized by the advent of

optical measurements. Several companies (in the U.S., Europe and Japan) have
independently developed optical transducers to replace current transformers. For historical
reasons, these have become known as OCTs, which could stand for optical current

transducers or optical current transformers. Some use bulk optics, other fiber optics. All
have the advantage that the insulation system of the measurement is greatly simplified. The

optical materials used are inherently insulators, and moderately inexpensive. Economically
and technically they are better than the conventional CT Yet in the U.S., apart from a few
demonstrations, OCTs sit unused on the factory shelf. While the lack of an interface
standard is cited in explanation, see Section 3, the fact is that industry conservatism is at
work.

Optics can also be used for distributed measurements. By means of a device known

as an Optical Time-Domain Reflectometer (OTDR) the temperature profile of a transmis-
sion line can be obtained. This information can be of use in maximizing the power on a

transmission line, especially in hot weather when the cooling effect of the air is small, and
when many utilities are at peak load. OTDR temperature measurement systems are
commercially available. Perhaps research into automating the use of the data would help
their more widespread application.

As far as measurements are concerned, it is fair to say that all the parameters needed

to operate a power system can be measured with sufficient accuracy and speed. Now we
turn to the purpose for which most of this information is obtained: system control as imple-

mented in the energy management center.
The control system can be broken down into several parts: the measurement itself,

any local processing, communications (typically SCADA), and energy management center

processing. Because of the complexity and size of the typical power system, a large number
of data are brought into the energy management center. So much information is delivered
that it is easy to overload the system operator. Indeed, this is one of the well-known
problems. (It could be worse. Some of the developments suggested below will increase the
amount of data considerably.) But operator overload is already a problem well on its way
to solution. As more functions are automated, and alarm-handling improved, the overload

experienced by operators will inevitably diminish. But system performance will not have
improved, without some additional steps being taken.

The software in the energy management center has developed in an application-
oriented environment. Often, the software for each function has been developed on its own,
with its own user interface, means of accessing and displaying data, and its own model of

the system. In the future, the trend will be more information oriented, with the access,
display and models increasingly decoupled from the application.

The amount of data acquired every scan of a representative SCADA system, typically

every 3 s, is somewhat less than 100 kb, depending on the size of the system and the
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parametersmonitored. This is about as fast as the computer software can handle it. If the

details of the distribution system are added to this data stream, a total in the order of
500 kb/s will be delivered to the energy management center. Many of the data will not

change significantly between scans. (In the past this has led to the use of compression

techniques.) Some of the data will contain errors.
This information is used to supply a static state-estimator program which rejects bad

measurements and, in turn, provides a data-base for the programs controlling power

generation, executing voltage control, and performing security assessment. The availability
of this common database lends itself to an information-oriented future. It is reasonable to

ask what would be done if the limit imposed by communications or computation were
removed.

A power system is operated against a constraint of some sort (economic operation,
environmental dispatch or capacity limit) all the time. Modern control theory indicates that
this is an optimization problem. Optimal power flow programs are presently available. The

improvement poss$1e here from the more frequent acquisition of data is likely to be small
because the state of the system can change only slightly between scans.

More widespread data acquisition may have some advantages. A new measurement

being considered in some utilities is that of phase angle across the transmission system.

(Since this uses the Global Positioning Satellite system for its ultra-precise timing, it is evi-
dence that not all utilities are conservative all the time.)

System phase represents only a small amount of information, used to improve control
of the generation and transmission system. The acquisition of additional data, particularly

from the distribution system, should be considered. It was observed above that ultimately

this was the only way the behavior of the bulk system could be understood. But there are
local advantages, too. While power system losses are not large (a few percent), they do
mostly (70-75%) occur in the distribution system. Lee and Brooks (1988) used data from
Pennsylvania Power and Light obtained throughout 1984 and 1985 at 15-minute intervals
to study the effect of system reconfiguration. Losses were reduced over 14% (2500 MWh)
with an annual estimated savings of over $110,000 for 26 feeders. The overall efficiency of
the power system was calculated to rise by 0.2% to 98.95%. If these figures could be

extrapolated nation-wide, this seemingly small amount could be significant.
It is hard to say what the result of better measurements (in terms of bandwidth or

accuracy) would be. Improved measurements have made a difference in the past. Here are
two examples. First, most of us were taught that when a short circuit is applied at the
terminals of a generator, it speeds up. In fact, careful measurements have shown that,
momentarily, the generator slows down. Fortunately, the error is on the safe side for relay
settings. Second, careful measurements of lightning have shown that the simple steep-rise,

slow decay waveform that is used for lightning impulse testing is wrong. Lightning is not

only very much faster than our test waveforms, it can be bipolar. In this case, the error is
not on the safe side for insulation coordination.

In the area of system computation, improvement is also possible. It may be
unnecessary for the entire system to be monitored either more rapidly or more widely for
more advanced techniques such as dynamic state estimation to be used for transient stability

control. (Dynamic state estimation involves the solution of the dynamic equations of the
system rather than just the static equations.) With a 3-second scan time for the SCADA,

and (say) a 3-ms scan time for certain crucial data, system operation decisions concerning
state trajectories could be made rapidly enough to operate 1-cycle breakers, for example,
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or for fast-valving of generators. This would require that the data be processed in a few ms,
a task that cannot be done with today's techniques. It was observed above that just the
static solution took about 3 s.

As another example, consider security assessment. As presently performed, this is
a straightforward problem made large by the number of combinations of contingencies
possible from a given starting point. In fact, the problem becomes so large that con-
ventional techniques cannot solve the problem in real-time.

The technology of artificial neural networks has been proposed as a way of over-
coming the problems of solving complex systems rapidly, and some progress has been made
in this direction in the field of power systems. Rule-based artificial intelligence (expert
systems) has been considered for power system use for some while. The application of
neural nets is more recent. A paper by Pao (1990) surveys the application of neural
networks to power systems. He shows that neural nets are less memory-intensive than look-
up tables, and faster than ordinary computation or other more conventional artificial
intelligence techniques. There are hardware problems associated with neural nets, however,
and these are discussed below.

Continuing with the discussion of software issues, there are a number of other new

developments outside the field of power system analysis that should be considered. Fuzzy
logic control offers the potential for robust problem solving. The name derives from fuzzy
set theory, in which fuzzy is used to describe problems containing a degree of imprecision

about what is known. Fuzzy logic control seems to be capable of successful operation over
a wide range of conditions in the power system, whereas the performance of conventional
control would deteriorate because of the system non-linearity.

The relatively new field of genetic algorithms has met with success in some areas,

including power systems (A_arapu and Albanna, 1991; Nara, Shiose, Kitagawa and Ishihara,
1991). Genetic algorithms are optimization and learning techniques based on the ideas of
natural selection and genetics. The approach may become useful as a planning or design
tool. Control applications may become attractive as neural or parallel processing becomes
easier to implement. Applied to neural nets, genetic algorithms offer the prospect of faster
learning than conventional methods, thereby making some neural net methods feasible that

would otherwise suffer from the combinatorial explosion problem in the training phase. _

The discussion of the software issue is closed with a few words of a general nature.
There has been a regrettable tendency to avoid "open systems" in power system software.
Suppliers have tended to keep their products proprietary. Some utilities that have the

expertise to develop their own energy management systems have done so. American
Electric Power (AEP), the largest investor-owned utility, has traditionally built its own
energy management systems (EMS), for example, and Commonwealth Edison (CECo) has
recently followed suit. AEP wanted to have firm control over the EMS design. CECo was
attempting to upgrade a system that had, over its lifetime, been more improved by CECo
than its original vendor (Hansen, Illian and Kilar, 1991).

The problem with all of this is that closed systems are developed. The possl_oility of
integrating software from other sources is lost. Any new piece of software would have to
be adapted for the particular case. Software maintenance becomes more difficult (which

qn view of the comments in the Introduction, it is to be expected that I would support study of
genetic algorithms.
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is the reason why CECo beganwriting their own software in the first place!), and more

costly. It would be to the benefit of all if this trend were reversed.
Open systems are systems that are adaptable, upgradable, can make use of industry

standards, and have carefully defined interfaces. Such systems permit a modular approach

to software (and hardware, for that matter), and encourage competition in product devel-
opment. Closed systems are the opposite---_ozen in design and function, and headed for
obsolescence as soon as they are built.

There are moves towards open systems today. Any such moves, including standardiz-

ation of interfaces (such as for application/environment, human/machine or communi-

cations), are to be encouraged.
Turning now to hardware, the dramatic improvements in performance of computer

hardware cannot have escaped anyone's notice. The power industry does not represent a

large enough market to drive computer hardware technology, so we are limited to consider-
ation of the advances that have occurred because of other driving forces: optical storage,

parallel processing, networking and so on.
There is one more specific observation to be made in this area. It was noted above

that one of the problems with the neural net approach is the difficulty of implementing the
artificial neural network in hardware--much of the work to date has been done using

simulations of networks. Some special-purpose integrated circuit neural networks have been
built JPL, for example, has built some analog networks using very large scale

integration--but they have limited resolution and are rather expensive.
A new method of handling analog data has emerged recently: digital signal

processing. Integrated circuits designed specifically for DSP use pipelining techniques and
parallel processing. They have shown themselves to be capable of impressive performance

in a number of applications. For example, when the "pause" button is pressed on a CD

player, the disc keeps rotating, but the sound stops. The signal is not interrupted, rather
the 16-bit signal samples are multiplied by a number series that represents a rapidly
decreasing function. In order to avoid an aud_le click, a DSP chip is performing calcu-

lations at a rate in the Mflop region!
To achieve this kind of performance, the internal architecture of the DSP circuit is

highly parallel. Whether applied as artificial neural networks, or in some other way, DSP
techniques have great potential to solve the problems caused by the complexity or speed

requirements of power system control. DSP techniques could have significant impact on
protection, too. While early (analog) attempts to use electronics for protection met with
difficulty, digital relaying is now becoming accepted. Using DSP, a 1024-point FFT (fast
Fourier transform) can be performed in less than 1 ms---orders of magnitude faster than
the mechanical time constants in a power system. Using DSPs, more complex calculations

than are presently possible in the power system could be done with time to spare, both in
relays and in the control center. High-speed correlations, for example, might offer new ways

to perform fault identification and location in real time. The possibilities are quite

fascinating.

1.3.5 Institutional Impacts

The National Energy Strategy (1991) points out that 45 GW of new capacity could be saved

over the next two decades by institutionalizing integrated resource planning (IRP). An inte-
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grated approach to operation can result in improved energy use. However, any attempt

to integrate the planning or operational control of a power system will be met with one

particular problem. Very few utilities are organized in a way that permits planning or oper-

ation as a single entity. Almost without exception, generation, transmission and distribution

are operated by separate parts of the company, sometimes by different companies. Com-

munications is often handled separately; so is protection.

This kind of organization has resulted in difficulties already. For some while, it has

been technically possible to include a fiber optic communication channel in the static wire

of a transmission circuit. The method is known as OPGW, optical ground wire. The ap-

proach was first used by the Central Electricity Generating Board (CEGB) in England, in

about 1980. Yet OPGW was incorporated in Mexico before it was in the U.S., largely

because of the difficulties of inducing the transmission department and the communications

department of any U.S. utility to work together.

This is not intended to be a finger-pointing exercise. The utilities are not the only

source of institutional problems. NUGs are, by definition, separate companies producing

electricity. The utilities are obliged to buy QF energy, though they have no say in the

locating of the generator, or even whether it is needed. Subtransmission or even

transmission system reinforcements might be needed to accommodate a large IPE If the

power output is large enough, planning and operation of the generation facility clearly have

to be coordinated with the remainder of the utility. This should include consideration of

the utility's estimates for future load growth, which today it typically does not.

The problems of integrating QFs can be expected to become more acute as the

proposed reform of the Public Utility Company Holding Act is enacted, and as PURPA is

changed to increase the size and number of QFs, all within the aims of the National Energy

Strategy. The interconnected transmission system is to become the wholesale marketplace

for buying and selling power, no matter the source. While this will have the effect of

increasing competition, it will cause some problems.

It is not clear that technical research, government funded or not, can address any of

these institutional problems. They are brought up here to indicate that even the perfect

technical solution to a control problem cannot be guaranteed successful implementation.

Perhaps one way to help is to consider a situation that, by taking an extreme position,

makes the likely future seem more reasonable. Let us indulge in that exercise.

Possibly the most dramatic change facing the industry at present is the "open access"

to transmission that is being mandated by regulators to encourage wholesale competition.

I would like to consider an expanded version of this, hinted at earlier: operating the electric

utilities in a considerably deregulated manner, similar to the telephone companies/

Suppose a customer were able to buy electricity from any utility, anywhere. This

would surely put the utilities in competition with one-another. The local utility would be

responsible only for delivery. Guaranteed revenue only from this service, they could make

a living out of wheeling charges. Energy sales could be added if they had generation that

SWhen I started to write the description that follows, I thought it had evolved from a concept

discussed by T. Paul Mauldin of PG&E in an after-hours conversation at the DOE workshop. His

idea was to consider a large substation to be a "profit center," capable of negotiating its own deals

for power with the generating stations it was interconnected with (presumed to be owned by the

same company). I see now that it also owes much to the deregulation of the phone companies.
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was competitive. The cost of the energy delivered to the customer would thus automatically

include the cost of generation, paid to the generating company, and the cost of transport-
ation, paid to the local company. As in the ease of the telephone companies, the local
company would handle all the billing.

One cannot but think that a market-like system of this kind, populated by informed

buyers and sellers, would result in a close-to-optimum situation. So what might be the

problems or objections?
• First, there is the cost of the transactions needed to make the approach work.
Whatever the size of the customer, neither the utility nor the customer can afford to waste

resources negotiating.
Just what resources could be used are very technology-dependent. With little change

in hardware on the part of the customer, domestic users might be prepared to negotiate a

price for the next quarter or year of service. A large industrial customer might wish to

review his options more frequently, say every month. With some advances in the hardware
installed at the customers' premises, the negotiations could be handled automatically, on a

minute-to-minute basis. This would require some kind of computer to represent the
customer, and a communication system that for the present af least---does not exist.

Nevertheless, the fact is that the telephone companies have demonstrated that this kind of
operation is feasible. The local phone company, a natural monopoly no less than the power

company, delivers the long-distance service of its competitors, and bills the customer on
their behalf. For many customers, the phone bill is smaller than the electricity bill; yet the
billing calculations can be done on a second-to-second basis. It seems that the transaction
cost can be made reasonable.

• Second, the utility might object that there would be unexpected or unpredicted power
flows. The concern arises because, with ac transmission systems, the power flows according

to the basic equations of electrical networks, and is no respecter of ownership.
If unanticipated flows do occur, it is evidence only that the present situation is not

optimal. Consider the case of the west coast 6. Power is generated near population centers

all along the coast, but there is an excess of power (from hydro resources) in the north, and

a net import into the south. The Pacific Intertie, a combination of ac and dc lines, is used

to deliver a large fraction of that power. An unexpected power flow might occur if a large
number of customers in, say, the Los Angeles area decided to buy their power from Mexico,
with whom the area is connected through San Diego Gas and Electric (SDG&E). Suppose

this happened. The unavoidable conclusion is that the power is being bought from the
south because the price of Mexican energy was attractive. If the resulting power flow is
unexpected, would it not be fair to say that the Los Angeles Department of Water and

Power (LADWP)or SDG&E should have been buying their (wholesale) power from
Mexico? It is of course most likely that there would be no unexpected power flows. The

power systems are not operated a long way from optimum.
• A third difficulty arises when system extensions are considered. The example of the
Pacific Intertie can be used again. Suppose the clock is wound back to a time before the

Pacific Intertie was built. LADWP is faced with good load growth but environmental

Sl'he examples to follow are for the purposes of illustration only. By naming lines and power
companies, I have no desire to commend or to slight. It simply happens that I live in the area served
by these entities.
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problems with building local generation. The Pacific northwest has an excess of generation,

but there are no adequate tie-lines to the south. 7 The question then is, How is the Intertie

to be financed?

In reality, the question has already been answered in one way. Bonneville Power

Administration operates one of the nation's largest transmission networks. They own no

generation, and they sell wholesale. In the case of BPA, the financing was through the use

of federal funds, but in principle the need for transmission could have been met by an

entrepreneur. Of course, that entrepreneur could have been a business unit of LADWP or

the Corps of Engineers (owners of much of the hydro generation). So the question of

financing system extensions or reinforcements is really moot. In a competitive, market-

driven environment, needs of this kind will be met simply because it is in somebody's

financial interest to do so. That this can happen without government subsidies is shown by

an investor-owned Swiss company, Elektrizitdtsgesellschaft Laufenburg, that operates a

transmission system connecting Switzerland, Germany and France. Their revenue is earned

from carrying charges associated with the power flows needed to take advantage of the

diversity of the load in those countries.

• Finally, there are questions of system reliability, stability and security. These are

aspects of system operation that require centralized decision-making. Will it be possible to

achieve the appropriate control in the decentralized, transaction-driven system we have been

describing?

The answer again must be Yes, but there are likely to be some awkward moments.

Even in today's protected environment, some utilities are reluctant to furnish system data

to their neighbors. These data are needed for accurate calculation of system performance,

but are withheld in a spirit of "beggar-my-neighbor." This attitude would not improve if

neighbors become competitors.

Perhaps it will be necessary to understand how to cost investments that are made for

stability or security, so that these can be factored into the billing process. And if the power

flows do vary more widely than before, it may be necessary to implement novel protection

schemes, perhaps with non-constant parameters. But surely these are the kind of issues that

are in a "grey area" now, and would be clarified only if it became necessary to provide a

proper return on the particular investment, rather than the general rate base.

A utility can ascertain what value a customer places on reliability by asking directly,

How much would you pay to have the number (or duration) of outages that you experience

reduced by some (specified) amount? Have they asked themselves the same question? 8

7I have no idea if this was the situation on the west coast when the Intertie was being considered,

or whether the generation followed the transmission, or whether the two went hand in hand. For

my present argument, the most realistic case is made if this particular version of the problem can

be adequately answered.

S'l'hey had not in 1970. An answer to this question would bias the "break-even distance"

approach to comparing ac and dc, then being used to justify the use of de transmission. Because

of the higher terminal costs and lower line costs, there is a distance above which de transmission
costs less to build. There was---and, as far as I know, is---no consensus on what value to attach to

the stability improvement in the ac system achieved by modulating the de line.
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Having argued that there are no insuperable problems, let us turn to examine the
advantages of this kind of operation. It was argued above that it was unlikely that there
would be any major changes in the power flows in the system. So why bother?
• First, while there might be no abrupt changes in system operation, gradual changes

that reflect customer preferences may be expected. This means that the utilities will begin

to feel the effect of competition, and respond accordingly. Further, an increased degree of
specialization is possible, with generation and transmission being separate functions, so

increased efficiency should follow.
In other words, reinforcing the theme of this part of the report, here is a mechanism

to put evolution back to work in this industry. It is this change that, in the long run, can

be expected to have the most profound beneficial effect.
• Second, the more specific costing should result in a more equitable handling of a

number of cost-related factors. In a regulated environment, it is difficult to see how to
handle conservation, and because of this relatively little has been done in the area. It is a

fundamental precept of market economies that price is a conveyor of information. What

better way, then, to see what value the customer places on his need for air-conditioning, for
example, than to institute load management? System reliability could be handled in a more
informed way, too.

Improved cost allocation methods should help deal with environmental matters, too.
Under the 1990 Clean Air Act, power generation will have to reduce its emission of sulphur

dioxide by more than 50% by 2000. The Act leaves it up to the utilities to decide how the
cuts should be made, recognizing the differences that exist between power plants. A system

of "pollution permits" has been created, that should allow a market-like process to optimize
the pollution reduction. The true cost of reducing air pollution, for example, by retiring a

particular generator, rather than adding scrubbers, should become apparent 9. The value
placed on visual amenity should become evident too. The transmission system could be
reinforced without significant cost, in an effort to make more use of distant generation. But

whether this would be acceptable is a different matter: the transmission system is the most

visible part of the power system.

The reader might be tempted at this point to ask, If competition is such a good idea,
why has it not happened? Apart from the conservative nature of the industry and the

regulators, about which so much has already been said, it would be fair to say that the
technology to implement the kind of system we have been considering has not been
available much before now. There is an implicit dependence on a communications system,

and the widespread availability of computers.
The calculations that must be made for fair and accurate billing of delivery services

are perhaps more complex than those needed by the local phone company. In a theoretical,

_he interference of local regulators may prevent the market's development. Since the
Commissions are state bodies, they can---and do--disregard federal intentions to promote their own
interests. Commissions in coal-producing states (such as Kentucky, Ohio and West Virginia) are
threatening to adopt policies that will encourage the continued use of coal. This will certainly distort
the market. An argument can be made, it seems, for federal regulation to take precedence over

state regulation.
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perfect system, the capital costs associated with transmission facilities as well as the losses
associated with the instantaneous power flows would be accounted for by measurement and
calculation, and included in the bill sent to the customer. The bill would thus be dependent
on the results of a load flow calculation, which seems unrealistic. In a less precise but

probably more practical system, some of these calculations are based on statistics, essentially
describing the marginal costs of meeting various loads. A simplified approach, perhaps
based on the B-coefficients (loss formula coefficients) described by Kron (1951) and
Kirchmayer (1958) might allow for distributed accounting for transmission losses.
Refinements could follow if needed.

The fact is, of course, that the billing methods used at present are statistical,

incorporating capital costs and energy costs in some broad-brush way that is quite
transparent to the customer, but are in any case approximate. A free-market approach

simply requires that the various components of cost be known fairly well.
With a competitive system like this, can the regulator be entirely removed from the

process? If a convincing case can be made for a Yes answer, I suggest that serious thought
be given to investigating the obstacles to implementing deregulation. It is more likely that
the answer must be No. The main reason that regulation might have to be retained is that

the local company is still a natural monopoly. Because the distribution system is the most
costly in terms of investment per customer, or per kW of load, it still seems unrealistic to
expect competition at the customer level to attract new investors. A new delivery-only
utility would have to build new distr_ution facilities, and could expect to pick up at most
half the existing load. There is also the possibility of the generation and transmission
companies forming a cartel, though anti-trust regulations already exist to make this option
unattractive. There are still some benefits to be gained from further consideration of a

reduced degree of regulation and increased competition, and this possibility should be

investigated. At the very least, a study of the impact of this kind of competition might help

the regulators see how far we are from optimal operation at present.

1.4 Prospects for the Future

For some time we have been reading predictions of future problems in the utility industry.
There would be capacity shortages, and blackouts. Dependence on imports would raise
costs. Deregulation is about to cause financial and technical problems.

In spite of all this, it seems that the sky has not fallen. This may therefore be a good
time to review the situation, and see whether we should be concerned over the health of the

utility industry.
Nationally, there/s still a capacity problem, although it is not as severe as some

observers feared. Areas _th low reserve margins are localized. In some areas, load growth

did not meet predicted levels, and in some areas new generation has been built. But there
do remain regions that are not only short of capacity, they also lack the transmission
facilities needed to import the energy required to solve the capacity problem (ECAR's

Future, 1991). In the summer of 1990, there were voltage reductions and load shedding in
the Baltimore-Washington area, because of capacity and transmission shortages at Baltimore
Gas and Electric Company and Potomac Electric Power Company (1990 System Disturb-

ances, 1991).

The utility industry/s dependent on imports, both of energy and equipment. As long
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as the imports take place in an environment of free trade, it is my opinion that this should
not be a cause for concern. U.S. government involvement addressing these issues and sup-

ported only by arguments over restoring some sort of "all-American" utility industry are
somewhat specious in the post-Communist "New World Order" of the late 20th century.

(Arguments based on the impact on the nation's current-account balance may be more valid,

but they take us beyond the scope of this report.)
Finally, there is the question of the financial health of the utilities. Perhaps because

utilities operate in a largely regulated environment, there is little cause for concern here.

A recent study by London Business School and The Economist (The Best Companies, 1991),
compared 800 companies by added value as a percentage of sales. On this basis 4 of the

top 10 and 12 of the top 30 companies were U.S. utilities.

ActuaRy, the prospects for the industry are mixed. There is cause for some level of
concern. The fact that the same Baltimore Gas and Electric that was mentioned earlier in

connection with an east-coast power failure was in the list of companies with high ratios of
added value to sales--in ninth place--must mean that financial health and reliable service

are not perfectly correlated, x°

1.4.1 Need for Government Involvement

The argument was made above that there is a need for additional R&D to be performed
from the viewpoint of both the manufacturers and the utilities in this country. Let us turn

now to a review of why government involvement is needed and justified.
First consider the situation of the manufacturers. Some U.S. companies have not

been equal to the challenge of competition from abroad. This is particularly true in the

heavy manufacturing side of the business. The power interests of Westinghouse, Square-D

and many small companies have been bought by foreign concerns. In other companies the

response has been appropriate: product lines have been rationalized, processes have been
streamlined and product quality has been improved. Unfortunately, some of the infra-
structure changes have come somewhat late, and R&D investments that should have been
made over the last decade or so were not made. Lower than expected demand, and low
demand predictions have not made the utility market attractive to long-term investment in
the U.S. This is how the power part of Westinghouse came to be sold; and why the Swiss

buyer (ABB--Asea Brown Boveri) is finding it necessary to pour millions of dollars into the
venture to modernize it.

In terms of research, the continued involvement of the government is justified, it
seems, by the evident lack of alternatives. EPRI, seemingly the logical alternative, is under

pressure from the utilities to produce visible results. Consequently, they have tended to
support short-term development. The kind of innovative, high-risk or long-term research
that the government has sponsored in the past is just not being done elsewhere in the U.S.
(But simply preventing foreign take-overs of a flagging industry should not be the proper

role of the government. That some foreign buyers have "deeper pockets" than U.S. share-

holders should not be a cause for concern---or surprise. And a viable Westinghouse that

t°And it also supports Coase's viewpoint that the regulatory process has not worked to the
benefit of the consumer.
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happensto be owned by ABB will employ more Americans than a defunct Westinghouse.

According to free-trade arguments, it is difficult to maintain that it is essential that the utility
manufacturing industry in the U.S. be U.S.-owned.)

In terms of energy management systems and software, some U.S. companies have
been acquired by European concerns (ESCA, SCI), but others are very strong inter-

nationally. Empros (a Division of Control Data Corp.), for example, has orders world-wide
for their energy management systems. Power Technologies Inc. (a consultant) has recently
opened an office in England, so as to be able to address the market of the European
Community. Thus, it is very hard to argue that government nudging of any kind is needed
here.

The same is not true of the utilities. Very likely because of the regulated environ-
ment they operate in, U.S. utilities have tended to become complacent. Planning strategies

have not been optimized in terms of lowest societal cost, and have not considered conserva-
tion on an equal footing with system expansion. The idea of integrated resource planning

as a tool for optimizing the use of the resources available to the utilities is very appropriate.

Because IRP is interdisciplinary in nature, and because it runs afoul of the
organizational problems of most utilities, this kind of activity is an excellent candidate for
government funding. The dollar invested here would be leveraged with the dollars spent
by the utilities on conservation, and not spent by them on fossil fuel. In any event, there

is a singular lack of alternatives for funding R&D in this area.

The same argument can be made for integrated operation. In a way, integrated
resource planning and integrated operation represent solutions to the same problem, just
with different time scales. Government funding of R&D for the integrated operation of the
system should be just as highly leveraged as IRP funding. It is argued below that an

effective way to accomplish technology transfer is to form R&D partnerships with industry,
further leveraging the investment.

1.4.2 Technology Transfer

Suppose that some government-funded research group develops a new solution to some

problem in the utility world. How best to get the technology adopted? Most researchers
would want to write a paper. But research papers are written for other researchers, and few
companies let their research groups decide policy. The paper has minimal commercial

impact.

If we continue with the evolutionary model for R&D, the step that follows the new

development is to test it in the real world. The problem is that utility conservatism will

make this difficult. Truly is it said that the utilities want the very latest in high technology
advancements, provided they've been tested on somebody else's system for 30 years.

The fear of the unknown will only be overcome by experience. The government-

owned utilities--BPA, TVA and WAPAmare in a position to help, as they have in the past.

BPA built one of the first Ultra High Voltage test lines, and TVA may still be the only U.S.

utility with an optical CT They should be encouraged to be innovative in this way. Given

that not everything that comes from the research lab will be successful, its adoption by BPA

or TVA should be seen as a test, and lack of success should not reflect badly on these
utilities-either in terms of reputation or in dollars.

The ultimate object of demonstrating new technology is presumably to have it more
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widely adopted. A company will add something to its product line. If too many reports are

written and too many papers are published, no manufacturer can see how to turn the new

technology into a product without al the competition being able to follow suit. So instead
of the new ideas being tested in the marketplace, they never get beyond the demonstration

phase. The implication of this is that if research work is to have any hope of commercial

success, it may have to be kept confidential until it is brought to market or until it is

protected by patent.
The desire for secrecy should be no surprise. If the research laboratory of a

company had done the work, they would probably have been required to restrict the flow
of information out of the company. The same approach may have to be applied to work

done by the National Laboratories, for example.
Of course, the question of whether to write a paper or not might be moot if the work

was done as a result of an R&D partnership already formed. Presumably in this event

publishing rights would be controlled by the agreement with the company or companies that
had funded the work. An advantage of the approach of forming a partnership before the
work is done is that the necessary sanity check is performed on a continuous basis. The

research is "directed." A difficulty is that the company is, to some extent, speculating on
the outcome of the research. Conservative companies do not speculate.

It is encouraging to see that some new kinds of business relationships are developing
between industry and government. The work on optical current measurement done at the
Boulder laboratory of the National Institute for Standards and Technology (NIST), for
example, has been developed exclusively by 3M Company. My group's work at JPL on a

fiber optic communication system is also to be exclusively licensed.
It has taken an incred_ly long time to find a buyer for the AbNET communication

system developed by my group at JPL. There is a lesson to be learned from this, and I

would like to generalize the result. Delay in having an invention adopted could be due to

any of a number of causes:

difficulty of finding the right buyer
not-invented-here syndrome
conservative nature of the industry
the invention is not needed

It is inherently difficult to point to any one of these as the cause of the delay. The

conservative nature of the industry has already been addressed. It would be presumptuous

to address the not-invented-here problem.
If the invention is not needed, of course, it will be impossible to find the right buyer.

But note that not all "needed" inventions will be recognized as such. (Xerography and

lasers are two fine examples.)

The question of finding the right buyer may be solvable. At present, when the
government wants it to be known that dollars are available for work in a certain area, a

notice is inserted into a publication known as Commerce Business Daily, CBD. Companies

eager to help the government spend their money read CBD, and respond if appropriate.

What is needed is a publication that is a counterpart to CBD, that would be used to tell
the private sector where the government was looking to them to co-sponsor some R&D.
Let us call this new publication Government Research Monthly, GRM, for want of a better
flame.
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It would take a while for this publication to be effective, to achieve the same

reputation and readership as CBD. The proper promotional techniques would have to be

developed. But it would be a worthwhile endeavor. A publication like GRM would add

to the means available to begin the process of technology transfer, supplementing the other

innovations being implemented at DOE, and relieving the researcher of some of the

marketing chores.
This is not an argument against the publication of technical papers or reports. All

of the traditional means of disseminating information are applicable to the kind of work that

can be co-sponsored by government. But the timing should be considered carefully. Basic

results could be published immediately in scientific journals. Applied results, especially

those that have been co-funded by industry, should be published only after the commercial

implications are understood.

The principal professional journal of the industry, the Transactions of the Power

Engineering Society (PES) of IEEE, has a dual identity in this respect. It varies between

preferring papers that represent a fundamental advance, and those of value to the practicing

engineer. This makes it difficult, sometimes, to publish research results in a timely fashion.

1.5 Summary and Conclusions

Dramatic events on the world stage have recently shown the relative merit of the free
market, the economic analog of the struggle for survival in biology. The power industry has

to some extent managed to sidestep the evolutionary process, and finds itself struggling in
the rapidly changing regulatory environment of the 1990s.

Regulatory changes proposed as part of the Department of Energy's National Energy

Strategy can put the interconnected transmission system in the role of the marketplace for
electrical energy. Fairly complete deregulation might be possible. This should have a
stimulating effect on the industry, allowing competition of a kind that the utilities have
hitherto not known.

This increased competition should motivate the industry to evolve again, to adopt
some of the technical advances that they have, by and large, ignored in the past. But effect-
ive incorporation of new technology into a utility implies the availability of the technology
in a form the utilities can use. Uncertain growth and lack of motivation have led to inertia,
and some of the U.S. suppliers of the utility industry appear to be flagging.

Government support is justified not because the industry is facing foreign
competition, but because an industry that is revitalized with government involvement can
be cognizant of societal costs, while evolving in directions governed by market pressures.

Integrated power system control is an operational counterpart to integrated resource
planning. Before the power system can be operated in an integrated fashion, a number of
technical obstacles must be overcome. It is in the national interest to support the necessary
work.

The size and complexity of the problem of operating the power system as an
integrated whole will call for improvements in measurements, communications and computa-

tion. The problem can be broken up into separately solvable parts, involving optics,
electronics and control theory. A systems approach can be used to integrate the results.

But it is inherently a hopeless task to plan the entire endeavor. I opened with a
quotation about Darwin; I close with one from Adam Smith. The explanation of the
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apparent movement towards harmony that Darwin exploited in explaining descent with
modification is included in Smith's famous metaphor:

Every individual.., by directing his industry in such a manner as its produce may
be of greatest value, intends only his own gain, and he is in this as in many other
cases, led by an invisible hand to promote an end which was no part of his intention
• . . By pursuing his own interest he frequently promotes that of society more
effectively than when he really intends to promote it.

The last sentence is the one I want to draw the reader's attention to. This section

of the report is based on a paper I prepared for a DOE planning workshop held in
November 1991. When the invitation from the organizers of this conference arrived at JPL,

it asked that authors consider the power system of 2020, and where this industry was

headed. I had difficulty in seeing this far into the future, instead of having an overall idea
of where we were going, I had several detailed ideas, candidates for a shotgun approach.

The ideas needed a strategy for implementation.
The example of evolution has provided that strategy. It is not necessary, and

probably not poss_ole, that the entire system be planned at once. This kind of government
involvement may lead to actions inimical to Adam Smith's invisible hand. However, if the
involvement is to create options rather than to make choices, then market forces will still

have the opportunity to work. The creation of options should be through government
support for research and development. An evolutionary implementation approach should
then lead to considerable excitement in the next decade or two!
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SECTION 2

AbNET COMMUNICATIONS NETWORK

N A GENERAL-PURPOSE distribution automation scheme, the need to communicate
with all parts of the power system means that the topology of the power system fixes the

topology of the communications network. The network can therefore be expected to include

a large number of branch points, tap points and interconnections. These features make this

communications network unlike any other.

The network operating software has to solve the problem of communicating to all

the nodes of a very complex network, in as reliable a way as possible even if the network

is damaged, and it has to do so with minimum transmission delays and at minimum cost.

The solution adopted was a set of communications protocols that we called AbNET,

described in an earlier report (Kirkham, Friend, Jackson, Johnston, 1990).

The details of the protocols were modified slightly during 1991. This section of the

report will review the original design and describe the changes. In addition, two other

advances in the network will be described. The I/O hardware to interface personal

computers in the laboratory to a fiber optic network, and a software simulation of the

protocols, both designed for the purposes of demonstrating the system, will be described.

2.1 The AbNET Protocols

Fiber optics technology is well known in telephone trunk applications. However, the design

of the AbNET network and the method of operating it are quite unlike the approach that

the telephone company would use, because a different problem is solved. Trunks are point-

to-point, the distribution system is not. The AbNET system was designed specifically for

distrl_oution automation. In the world of the phone company trunks, the design goals are

to maximize the distance between repeaters, and to maximize the number of phone calls

that can be squeezed into one fiber. This enables the phone company to hold down costs,

and to spread the charges among a maximum number of revenue-earning calls. In

distrl"aution automation applications, AbNET uses repeaters wherever there is a need to tap

or branch a fiber, so the distance between them is fixed by the power system and not by

considerations of maximizing the use of the resource. The amount of traffic that the net-
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work is expected to carry is low by the standards of fiber optics, so there is nothing to be
gained by using a high data rate approach. Instead, AbNET maximizes the capability of the
lowest-cost system. In terms of the revenue-earning efficiency of the phone company,

AbNET is poor. However, its price and performance are appropriate to the application for
which it was designed.

2.1.1 Open System Interconnection Model

The Open System Interconnection (OSI) model of the International Standards Organization

(ISO) will be used here to provide a framework for discussion of the AbNET protocols.

Computer-to-computer communications in the ISO seven layer model is shown in
Figure 2-1. A more detailed explanation is given below. This description begins with the
top layer and proceeds downward.

Figure 2-1
International Standards Organization model
of Open System Interconnection
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• The application layer is the layer of software that needs to transfer data across the
network. All other layers in the hierarchy exist solely to satisfy the needs of this layer. In
the case of a distr_ution automation system, the applications layer will include the SCADA

program, the program that presents data to the operator, and any control programs that
may be used.
• The presentation layer provides services to the application layer to process the data

in some way to make them more suitable for the layers below. This could mean, for

example, translation or encryption of the data. (The operating system of the personal

computer is an example of a presentation layer. It furnishes data in a format that can be

handled, for example, by the word processing program or the screen driver, and at the same
time can take a file of data furnished by a word processing program and present it for trans-
mission to a remote computer to the layer underneath, the session layer.) In the distri-
bution automation example, this layer could contain user-callable library routines for
address translation.

• The session layer is the first of the layers in this hierarchy specifically concerned with

communications to another computer. In essence, this layer is responsible for coordinating

interaction between the opposite end application processes. The layer has to be aware of

both the application and the communications. For example, a program sending blocks of

data to make up a file might pause for acknowledgement at the end of each block. This

could be a session layer function. In some applications, the session layer is a "virtual" layer.

The decisions made here are the type of communication to be employed (e.g. full or half

duplex) and how failures of lower layers in the hierarchy are to be handled.

• The session layer interfaces to the transport layer which is the highest of the seven

layers responsible for the integrity of data. For example, this layer would be capable of
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performing error checking, perhaps on a packet by packet basis. The job of the transport

layer is to furnish error-free messages, in sequence, to the session layer. Whether this is a

simple task or a complex one depends on the layers beneath. If the lower layers retain

message sequence, and perform error checking, the transport layer becomes very simple.

On the other hand, if the lower layers can operate so as to get messages out of sequence,

as AbNET can for example, the transport layer must correct the deficiency.

• The transport layer connects to the network layer, which is responsible for furnishing

data to the bare-bit manipulations of the data link layer below. The primary responsibility

of the network layer is routing the information from computer to computer.

• The data link layer is the highest level at which information as such is handled. The

data link layer may perform error control on a word by word basis; for example, parity

checking occurs in the data link layer. There may also be some means of flow control or

hand-shaking to assure synchronization between devices capable of operating at different

speeds. The telephone company for example, in their data link layer, typically will add bits

to the 8-bit word coming from most modems, so that error checking (in addition to the

parity bit that the user knows about) is usually performed.

Some users of the ISO model have divided the data link layer into two sub-layers:

logical link control and a medium access control. The logical link sub-layer is responsible

for establishing, maintaining and terminating a logical connection between devices. In a

parallel connected network, the medium access control sub-layer ensures that only one

device attempts to transmit at a time, performing the function of congestion control.

• The physical layer, the lowest layer of this hierarchy, is the level at which the elect-

rical or optical signals are exchanged. A specification of the physical layer typically includes

a description of electrical, optical and mechanical quantities involved. For example, RS-232

describes the type of plug to be used as well as the voltage levels and the pin connections.

In the world of modems, the physical layer includes a description of the procedures to

establish or release connections between electrical circuits such as phone lines.

One may note that the functional relationships between layers are clearly defined in

the open system interconnection model, but are often not so clearly defined in practice.

The visibility of the boundaries between layers need be clearly defined only if the boundary

corresponds to a product, in which case interfacing to that product (either physically or in

terms of software) will be vastly simplified. Thus, the transport layer and the session layer

functions are both performed adequately by the communications programs used in personal

computers; and the network layer, data link layer, and physical layer occur outside the

boundaries of the typical modem.

2.1.2 Review of Original AbNET Design

AbNET is a dual-hybrid network, comprised of a fiber-optics-and-power-line-carrier digital

data system in which every node (or RTU) is also a repeater. A passive fiber optics PCM

(pulse code modulated) voice channel shares the fiber cable. The nodes are interconnected

by fiber optic links routed along the distribution system. The fixed installation of the voice

channel is intended to be passive, the optoelectronics and the electronics being carried by

the user and inserted into the system as needed. Only the digital data system can be put

in the framework of the ISO OSI model. This is shown in Figure 2-2.
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Figure 2-2
Main features of AbNET
in OSI framework
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• Distribution automation is shown in Figure 2-2 as the applications layer. The bulk
of the routine traffic will probably be associated with data acquisition. Descriptions of the
various other functions that comprise distr_ution automation need not be repeated here.
Suffice it to say that AbNET was developed explicitly to satisfy the communications
requirements of data acquisition and control for distribution automation. The brief descrip-
tions that follow show how AbNET meets these requirements, and supports distr_ution
automation.

• The principal function of the presentation layer is to perform the conversion of data
descriptions (in application programs) into addresses that the lower layers can recognize.
• The session layer establishes transport connections between the central unit and the

remote nodes on a polling basis. Centralized information about network performance can
be made available to an applications program only through the operation of this layer. The

session layer therefore retains the ability to establish (and test) connections between
adjacent nodes. Since message delivery can occur in the AbNET system even if a number
of connections are broken, network integrity is checked by software, operating transparently
to the user, at this level.

• The transport layer is centralized at the distr_ution substation. It normally operates
through the local network in support of the data acquisition and control functions. Under
unusual circumstances, it can choose to use the local network for access to the area served

by another substation.
Normally, part of the packet header is the node address, a 2-byte logical designation.

One of the two bytes is used in AbNET to indicate "ownership." A substation owns all the

RTUs in its service territory, and none belonging to the neighboring territory. Ordinarily,

network layer operation screens the higher layers from messages intended for RTUs in
other areas. Along the border of two service areas, however, the RTUs (called gateways)

have to respond to two (or more) master stations at the substations. This means that the
rejection of "foreign" messages occurs not at the boundary itself, but one layer of RTUs
deep into each service area.

This feature provides a mechanism for one master station to take over the territory
of another if it is ever needed. A special kind of message can be sent from one master to
the RTUs of another, re-designating ownership, and redefining the boundary.
• The network layer is a decentralized message-based, store-and-forward system.

Congestion in the network is controlled by recognition of ownership, and by an antibodylike

algorithm, that allows a node to repeat a message once and only once. Routing is

accomplished by network flooding.

• The data link layer incorporates the field descriptions and framing definitions of
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IEEE 802 u as far as poss_le. Because the bit error rate is expected to be extremely small,

there is no handshaking for flow control, and no request for retransmission in the event of

an error. This avoids system problems in the case of hardware failures.

• The physical layer is a fiber optics based hybrid. Multimode fiber can be used,

transmitting optics will be based on LEDs operating in the near infra-red, the bit rate will

be 10 MHz, and differential Manchester coding will be used. (In many respects this is

similar to Ethernet). Access to locations on the power line secondary will be by means of

low-power high-frequency power line carrier communications.

2.1.3 Additions to AbNET Design

In operation, the application program performs its function by passing instructions through

the presentation layer to the session layer, for coordination with the communication system.

The session layer is responsible for polling the RTUs, and gathering data from them.

Although it was never stated explicitly, it has been generally assumed that the polling would

be sequential, with each RTU being addressed in turn. This would follow naturally from

a program that expected data from each RTU in turn. While this will work, and with the

AbNET physical layer it is fast enough to meet the requirements of SCADA, a speed

improvement is possible at the cost of a slight decrease in reliability. This modification

permits the application layer to issue an instruction equivalent to "Poll all nodes" to the

lower layers.

Consider the section of a network shown in Figure 2-3. A master station has control

of some RTUs that happen to be connected in a loop. If each is addressed in turn, the

polling sequence would be: Poll 1 (wait for response); poll 2 (wait for response); poll 3...
and so on.

Figure 2-3
Example of simple network

The message handling sequence is more complex, however. Thus, the sequence

begins: Master to 1; 1 to Master; Master to 1, 1 to 2; 2 to 1, 1 to Master; just to poll the

first two RTUs. As the length of a line (in terms of the number of RTUs on it) increases,

nFor most purposes, and in the case of most standards, it is only the bottom three .layers of this

hierarchy that are standardized. However, because these layers do need to be standardized for

effective communication between different machines, a good deal of work has gone on in this area.

IEEE in particular has developed a series of standards according to IEEE Computer Society Project

802. These are usually known by the decimal organization of the subcommittees. For example,

Ethemet has been adopted as IEEE 802.3 or CSMA/CD (Carrier Sense Multiple Access with

Collision Detection) and IEEE 802.5 is an embodiment of IBM's Token Ring.
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the number of "hops" required to poll it increases faster. Considering a linear network, the

number of hops required to poll the RTUs is as shown in Table 2-1.

Table 2-1

Number of hops required to poll a linear network

nodes hops

1 2

2 6

3 12

4 20

5 30

6 42

In a linear network, such as the one shown in Figure 2-3 if the connection from the master

to node 8 is broken, the distance from the master to nodej isj lines. To poll this node, and

to obtain the response, therefore takes 2j hops. The number of hops H required to poll all

the nodes up to node n is therefore simply

H=2Ej
j=l

It can be shown 12 that this expression reduces to n(n + 1), which greatly

simplifies evaluation. In the network of Figure 2-3 the most distant node is only 4 lines from

the master. The network will therefore be polled in 20 hops. In a system that has 10 lines

between the master station and the most distant node, it will take 110 hops for the last response

l_y definition

reversing the order:

n

]_j= 1 * 2 + 3 +... + (n-2) + (n-l) +n
J=l

_j=n + (n-l) + (n-2) +... + 3 + 2 + 1
j-!

adding term by term:

2]_j = (n+ 1) +(n+ 1) +(n+ 1) +... +(n+ 1) +(n+ i) +(n+ 1)
]=1

There are n terms in the series, so that:
n

2__,j=n(n+l)
]=1
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to be received. _3

The total number of hops for a data acquisition scan is reduced if the flooding algorithm

of the network layer is modified. In the general flooding network, a node acting as a repeater
retransmits an incoming message on all outgoing lines. Similarly, it transmits its response to

a message addressed to it on all outbound lines. In the network of Figure 2-3, for example,

node 2 responds to the master on both the line to node 1 and the line to node 3. Unless there

is a network failure, only the response to node 1 is important.

Taking advantage of this, suppose the action at node 2 consists of a response to the
master, on the line to node 1, and a simultaneous repeat of the poll on the line to node 3. This

change has the effect of reducing the number of hops required to poll the network to the number

required to poll the most distant node. The system of Figure 2-3 can be polled in 8 hops; a 10-

line system can be polled in 20 hops. The improvement due to the modified flooding algorithm
for these two cases is thus between a factor of 2 and a factor of 5.

There is a drawback, but it is relatively minor. If the network configuration changes

between the reception of the poll and the end of the response, messages could be lost. Suppose

the line between the master and node 1 fails immediately after node 1 receives the request for

data. In this case, the responses from nodes 1, 2, 3 etc never arrive at the master. Redundant

copies are not circulated in the other direction. While a copy of the poll might arrive at the low-
numbered nodes from the other direction, these nodes will judge that they have already

responded. However, within a few ms the master can detect that node 1 has "timed-out," and
that several of the nodes have not responded. If a new poll is generated (and if the network does

not change again), the missing data can be obtained, the poll being routed automatically by the

flooding algorithm.
The loss in reliability is relatively minor because data are lost only when the network

configuration changes. Once the configuration has stabilized, the two versions of flooding
behave identically. Field testing of the two versions may indicate the relative value of the

performance improvement and the reliability loss.

Another, related, concept worth considering in the context of squeezing the maximum

performance out of the AbNET protocols is "rapid-fire" polling. In a full-duplex system, there
is no need for the master station to wait for a response before transmitting a new poll. One can

visualize a network carrying an endless train of polling messages away from the master, and a
more or less continuous stream of data returning in reply. In the original polling scheme, the

master station waited for each node to respond before the next was polled. In the revised polling

scheme, the master station waited for a response from the set of all nodes before starting a new

scan. It is difficult to estimate the speed improvement that would result from waiting only for

the output channel to become clear before sending out a new poll. An assessment may be made

in the near future using the software simulator (described below).

One further refinement is worth mentioning. In a practical distribution automation

scheme, there are likely to be many RTUs dedicated to customer interaction, such as meter

reading or load management. These RTUs are nodes that can be expected to be connected in

_3Even this large number does not result in unacceptable delays. If each individual message is

1000 bits long, it takes 100/_s to insert the message into the network. With no allowance for

processing, 110 hops thus takes 11 ms. _
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a linear fashion along the feeders, contributing significantly to the number of nodes to be polled

in a single scan. In terms of system operation, such RTUs will likely have little data of value.

The AbNET protocols therefore recognize different classes or priorities of RTU. During normal

SCADA operation, the low-priority nodes will act as repeaters, adding slightly to the message

transit time. They will not furnish data unless they are specifically addressed.

In the original flooding scheme, not polling low-priority nodes could lead to significant

reductions in the scan time of the system. In the modified protocol, there would be no effect

other than a reduction in the amount of data delivered to the master.

2.2 Software Simulator

In order to make a convincing demonstration of the operation of the network protocols, a

representative topology was planned. The network should have a large number of inter-

secting loops or meshes, and a small number of nodes that were served by spurs. Since the

network was supposed to represent part of the distn_oution network served by a substation,

it should have more than one line from the master station. While the underlying power

system could be assumed to be operated radially, the communication system could bridge

open disconnects. In collaboration with George Allen of American Electric Power Service

Corporation, 1' the configuration shown in Figure 2-4 was decided upon.

Figure 2-4
Representative portion of
communication network

I

In order to show the flexibility of the network, a variation with two master stations

was also designed. This is shown in Figure 2-5.

Figure 2-5
2-Master version of
communication network

L M ACI1ER I0

_'At the time, AEP was considering a "real-world" demonstration of the AbNET network, to be

held at their John Dolan Laboratory near Columbus, Ohio.
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In this version, nodes numbered 2, 7, 12, 13, 18 and 23 are of the type we have

designated "gateways." In the AbNET system, a gateway differs from an ordinary node in
that it responds to two (or more) masters. In the Ethernet terminology, it is "promiscuous."

Gateway nodes are located along the border between two service territories. Rather than
put two RTUs on a pole at a border, each owned by one particular substation, the gateway
RTU is owned by both substations. Not only does this make economic and aesthetic sense,

it adds the flexibility to move the boundary by means of commands sent over the network
itself. There are a number of quite realistic scenarios in which such a feature could be

advantageous in distr_ution automation.

2.2.10vervlew

The original purpose of the software simulation (as opposed to the demonstration in Ohio)
of this network was to investigate the impact of operating a half-duplex protocol. While it
had been intended to operate full-duplex from the very beginning, the laboratory scale

demonstration, using modified Ethernet hardware and ordinary PCs, could be done more
easily and at lower cost if the protocol were half duplex. The question to be answered was
How much impact would half-duplex operation have on system performance. Accordingly,

a simulation was written in which the network of Figure 2-4 and the networks of Figure 2-5
were modeled in considerable detail.

The simulation was written in QuickBASIC, for convenience and portability, ts The

three major parts of the program will be described.
• First, the initialization section, executing once, is used to determine which network
to simulate. There are a number of other user options. Since the simulation uses only one

processor to emulate the behavior of the 25 processors in each network, it was necessary
to examine each in turn, to check for messages, generate responses and so on. Because this
meant a deterministic approach to the performance of the system, the option was included
to have the master stations generate destination addresses either in sequence, or at random.
The option is also offered to take lines out of service, or restore lines to service that have
been removed. After initialization, a message is created and stored at the master (or

masters), and a flag is set to indicate to the next part of the program that a transmission is
ready.
• The remainder of the code operates iteratively. The simulation portion begins by

examining each node to see if it has a message to send. Flags have been set (either by the
initialization section, or by the previous iteration) for this purpose. If a transmit flag is set

for a node, the message it has to send, stored in a transmit buffer, is copied to the con-
nected nodes, unless a flag derived from considerations of full or half duplex blocks the

copying. This is done for all nodes.
Next, the program scans each node again to determine what action it would take

operating under the control of the AbNET protocols. For example, if a node has received

tSAt the time of writing the simulation consists of about 3000 lines of code. The complete source
code will not be published in this report. Readers who are interested in experimenting with the
simulation, may obtain a copy by sending a DOS-compatible disk to the author, within a year of the
publication date on the cover.

35



a message, it checks to see whether it should respond, repeat the message, or ignore it At
this point, a new set of transmit flags is set, and the iteration repeats.
• As the simulation executes, a display portion is called to show the operation of the
protocols. A map of the network is shown on the screen, with the nodes numbered, and

with downed lines indicated. Each message is associated with a color, and the color

corresponding to the last message handled at any node is used to fill the box representing
the node. In addition, a vertical bar showing the source and destination of the last eight

messages, along with their color, is displayed for each master station. A tally is kept of the

number of nodes that have responded to the poll.

2.2.2 Results

The original purpose of the simulation was to see whether the performance of the system

would be adversely affected by half-duplex operation. At the time of writing, only the
original AbNET protocols (the ones designed prior to the modifications described in Section

2.1.3) have been simulated.
One of the first results of the simulation was that, in the single-master network,

exactly the same number of nodes could be scanned in a given time in the half-duplex
version as the full-duplex version. In other words, there were never any delays in

transmitting messages because of having to wait for traffic in the other direction.
This may at first seem surprising. The result arises from the combination of polling

and flooding. This combination means that no RTU can spontaneously originate a message.

Messages flood out from the master, and when a copy reaches its destination, the response
floods back. There is a poss_oility of two messages arriving at an RTU at the same time,

but they will arrive over different fibers. This is permitted, and does not result in a loss of
data.

There is a small defect in the half-duplex version of the model that should be
mentioned. Because each node is examined in turn, low-numbered nodes are allowed to

send, and the higher-numbered nodes they send to are made to wait. This is somewhat un-
realistic. In a real network, there would arise some occasions when the two nodes

attempted to send to one another at the same time. In the absence of handshaking, neither

message would arrive.
In the example of Figure 2-3, nodes 4 and 5 would attempt to send a copy of the

polling message to each other at the same time. While this would mean that neither

message arrived, it is also clear that there is no loss of information, since both nodes have

already handled the poll in any case. It is generally true that a colfision of this sort,

concerning identical data, will not result in the loss of information. It can only occur over
links that happen to connect two parallel paths.

On the other hand, an overlap on a link could happen in the case of multiple
masters, where the messages in the area of the gateways are different, but are ready to be
sent at the same time. Consequently, it can be argued that the results of the model are

optimistic in the case of two masters, since the code allows messages to get through that
should not. In defense of the simulation, it can be said that it contains a compensating bias

towards pessimistic results in the two-master case. In the model, an unrealistically large
number of the RTUs are gateways. The model gateways are therefore obliged to handle
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a larger fraction of the network's total traffic than is realistic. Because the program
examines low-numbered nodes first, high-numbered nodes can be made to wait. The effect

of message overlaps is therefore exaggerated.

The model shows that half-duplex operation is not more than 10% slower than full-
duplex, for the 2-master network of Figure 2-5. Since this network has the high proportion

of 6 gateways for 17 ordinary nodes, it is reasonable to expect that a realistic network would

perform rather better.
Of greater interest to the operator is the demonstration by the simulation of the

automatic routing feature of the protocols. Arbitrarily chosen lines can be taken out of
service, and new routes to the destination are found. With colors representing messages,
this becomes a fascinating exercise.

2.3 I/O Adapter

In the last of these reports (Kirkham, G6ttsche, Niebur, Friend and Johnston, 1991), the
similarity of the lower layers of the AbNET protocols to Ethernet was noted. Taking

advantage of this, it was proposed to demonstrate the AbNET protocols by means of a

network of PCs, connected by fiber optics. At each PC, the fiber cable would be interfaced
to the PC by means of a modified Ethernet board, and an I/O adapter of JPL design.

A number of I/O adapters have been made and tested. The circuit of the final design
is shown in Figure 2-6.

Power is taken from the 15-pin connector on the Ethernet board. It supplies two

essentially independent circuits, for the receive and transmit sides of the interface. Both
circuits are fairly conventional, and require little comment here. One unusual feature can

be seen in the receive circuit. The optical/electrical converter is an integrated device, but

it does not provide sufficient output to drive the CMOS circuits required to interface to the

computer. A circuit of a type known as MMIC (monolithic microwave integrated circuit)

has been used to provide gain.
These circuits were commercially developed as RF amplifiers. They provide

moderate amounts of gain (usually <20 dB) very conveniently. They are typically 4-terminal

devices, with 50-fl inputs and outputs. They make very useful and simple broadband gain

blocks, with constant gain up to or even above 1 GHz.

In this application, their bandwidth makes it possible to maintain the steep
wavefronts of the 10 MHz signals on the fiber. It is hard to think of a simpler and more
stable means of amplifying the small signal coming from the receiving diode to the level
needed by the remainder of the circuit.
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SECTION 3

INTERFACING MEASUREMENT TRANSDUCERS

OMEWHERE about the turn of the century, instrument transformers began to be used
in electric power systems. In those days, the power system operator controlled the

system by looking at instruments on a marble display board, custom built for the particular

power system. The meters were brass, and the full voltage and current of the power system

were applied to the board. Power system operator became a hazardous profession as system

voltages were increased until instrument transformers became widespread.

Current and voltage transformers were introduced to permit low-voltage meters to
be used with relatively little insulation. Casual contact with the display panel became
considerably safer!

Two standards emerged. Current transformers were standardized to furnish 5 A into
their secondary burden at rated primary current, and voltage transformers were standardized

at 120 V at rated voltage. I have not been able to ascertain when these values were first

used, but by 1911 the National Bureau of Standards in the U.S. was writing internal reports
(Agnew, 1911) discussing error sources on instrument transformers with these ratings.

To put the period into perspective, remember that at the time that these standard

values were emerging, attempts were being made to record and play back sound. These
early efforts were entirely acoustical in nature: the sound of the artist's voice, operating on
a small stylus, caused a wavy line to be engraved in a wax cylinder. When another stylus,

attached to a large horn, retraced the line, sound could be heard.

Later, disks rotating at 78 rpm replaced the cylinders. While these disks were

entirely incompatible with the cylinders, the basic technology was the same. The disks
produced better sound, and were easier to store.

Vinyl disks, rotating at 45 or 33 rpm, supplanted the "old 78s." Electronic amplifiers

replaced the horns. New equipment was required to play the recordings.
At each step, the older standard was not replaced, it was supplemented.. However,

the quality was so improved that eventually the older standards were abandoned. We may
suppose that the new technology of optical compact discs will eventually replace long-
playing records.

While these advances in the reproduction of sound were going on, the electric supply

business was frozen into its original standard. 80 years later, it still is! Was there such a
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large investment in the old technology that it was unthinkable to make it obsolete?

Probably not. The industry's size doubled every ten years for most of this century, so that

ten years after any new standard came into effect, half the system would be using it. Is the

industry so very conservative? Yes, see Section 1. But the development of optical current

transducers over the last few years by a number of manufacturers has given rise to the need

to reexamine the question of interfacing interface "transformers." It seems certain that the

earlier 5-A standard will not be retained, so the question is, Is a new standard needed to

replace the old one, and if so, what? This section of the report will examine the issues, and
show how a decision could be made.

3.1 Why not retain the 5-A Standard?

The use of a 5-A current transformer was justified principally by two factors. The first was

noise immunity. The level of current was sufficiently high that a false signal of similar

magnitude could scarcely be induced in the pilot wires. In protection and metering, it was

not difficult for the equipment to distinguish between a 5-A signal and a smaller noise that

might be coupled into the circuit. While "primary relays" could be used in the low voltage

part of the system, relays and meters driven by instrument transformers were more practical

at high voltages. With a lower current, the relatively long pilot wires in a differential

protection scheme, for example, might be a source of false trips.

Second, the energy available from the instrument transformers could be used to

actuate both the metering and the protective relaying equipment. "Signals" at 120 V or 5 A

can be used to create quite powerful electromagnets. A range of ingenious electromagnetic

devices has been developed to meter and protect the various parts of the power system, all

based on high-energy signals from standardized instrument transformers.

There seems to be growing understanding that optical or electronic measurements

should make no attempt to reconstruct the high-power 5-amp or 120-V signals that would

enable them to meet the existing standards.

• First, there is no need to. The required noise immunity is provided by the nature

of the optical fiber itself. As a carrier of information, and particularly digital information,

the few microwatts of optical energy in the fiber are remarkably immune to external

influence. And the energy required to operate a modern electronic relay is extremely small

compared to that needed for an electromagnetic device. (Note that while some modern

solid-state relays are built for 5-A, 120-V operation, they contain transformers that convert

the input signals to low-level values for internal use.)

• Second, it is scarcely practical to produce a 5-A replica. For a single current

transducer, there would be no difficulty, but for the large number required in a typical

substation application, the power supply design would be, to say the least, challenging.

Since, in the case of CTs for protection, the current transformer output is supposed to be

a replica of the input even if the input is 20 times larger than its nominal value, the power

supply has to be able to deliver at least 100 A per CT. And even assuming that a power

supply could be made, the impact on the station battery of having several such devices

connected would be detrimental. Thus, the community of users of instrument transformers

has concluded, informally at present, that a new interface will soon be needed.

This being the case, the question naturally arises as to what standard should be met

by an optical or electronic measurement. Is a new standard needed at all?
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3.2 The Need for Standards

In practice there are several kinds of standards, instituted for a variety of reasons. Some
of them are listed below.

• Continuity standards are a simple way of ensuring that the same product is used over
the years. For example, it is unimportant what the refractive index of transformer oil is, but
it may be specified to ensure continuity of supply. This is a substitute for a
• Performance standard, that would ensure that the right material was used for the job

in question by examining its ability to perform in that application. The fairness of standards

of comparison is ensured by
• Weights and Measures standards, that are written to see that a volt is the same in
Denmark as it is in the U.S., and so on.
• De facto standards come into being as the result of market forces. A technical
specification that becomes widely known and understood becomes a de facto standard. This
is likely to happen if there is one major supplier of a market, or one dominant user. Such

standards often become the subject of
• Enshrining standards, which take the work of others, usually in the form of de facto

standards, and give the work the stamp of approval. IEEE standard 488 is such a standard,
derived from Hewlett-Packard's HP-IB interface specification.
• Enabling standards spell out processes that have yet to become popular enough to

become de facto standards. The decision by the FCC in the U.S. to allow color TV
transmission according to the NTSC standard was an enabling standard.

There are a few other kinds of standards. Safety standards are written to protect

people from dangerous environments, and environmental standards are written to protect
the environment from dangerous people. Standards can be used to support industrial

protectionism or international science. For an area that has such wide-ranging implications,

standards get surprisingly little attention.
There is no de facto standard for optical current transducers, perhaps because there

is no single, dominant supplier or user. Users would feel more comfortable if they knew
theft transducers were built to an interface standard that gave them some flexibility of

application. Manufacturers would be happy not to have to custom build output circuits.
It is thus the consensus 1_of the users and the manufacturers that a standard is needed for

optical current transducers. Is the timing right for an enabling standard? Or if we wait a

little longer, will a standard emerge?

3.3 Timing of Standards

The timing for enabling standards frequently involves a compromise between setting the
standard too early, so that the industry is unable to take advantage of technological

developments, and setting the standard too late, so that the market becomes fragmented,
with each manufacturer having his own standard. Early standards may limit innovation, late

standards may hinder market development.

"Obtained, for example, at meetings of the Optical Sensors Manufacturers and Users Group

(OPSMUG), organized by Emile Hyman of Public Service Gas and Electric in Newark, lqJ.
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In practice, standards in a developing industry leap-frog one another. There are

examples in the consumer electronics industry. European color television is better than

American television because it uses a standard (PAL) that was developed later than the

American NTSC. The technology had advanced between the times that the two standards

were adopted. On the other hand, America had color television for several years before it

was available in Europe. In a similar vein, Britain had black and white television according

to a 405-line standard established before WW II, which proved later to be incompatible with

color. When Britain wanted to provide a color service, an entirely new set of standards had

to be developed. The 625-1ine PAL standard was adopted.

The standards for instrument transformers in the power industry have remained

unaltered for 80 years! The accuracy requirements for metering grade transformers, and

the dynamic range requirements for relaying transformers may have become more stringent

during the period, but the basic concept of 5 A for CTs and 120 V for PTs at rated value

has not changed since shortly after the turn of the century. This situation is very unusual.

Indeed, it is without parallel, because electrotechnology has advanced considerably during

the same period.

3.3.1 The Role of the Market

It is tempting to think that "the market" can be left to decide what the standard should be

for low-energy measurement transducer interfaces. This is unlikely. Consider the interfaces

that have been used in four efforts (Berkebile, 1980; Houston, 1980; Deliyannides et al.,

1981; and Schweitzer et al., 1981), funded by just one entity, the Electric Power Research

Institute (EPRI). The interfaces are described in Table 3-1.

Table 3-1 Interfaces used in

selected EPRI projects

Project Interfaces Used
or

Report Transducer to Receiver Receiver to Utility

RP 560-1

(EL-1611)

12-bit serial with "range"
bit, 1 MHz clock rate

12-bit parallel digital (15-V CMOS) and + IO-V
analog on two ranges

RP 668-1 14-bit serial, 8-kHz sam- +20-V analog, and 14-bit (5-V TTL) parallel
(EL-1343) piing rate digital

RP 1359-1

(EL-1613)

not addressed

12 bit 240 or 480 samples
per second

RP 1359-3

(EL-1601)

16 bits (for revenue). Also asks for an interface to
an RP-560 electronic CT, and analog high cur-
rent (3-A and 30-A) tripping outputs.

one output number per second on LED display
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Dr. Narain Hingorani, Director of EPRI's Electric Systems Division, told the author

a few years ago that "Standards follow practice," and that it was not EPRI's role to set
standards. It seems clear that neither EPRI nor market forces are going to decide on an

interface standard. The industry does not have a single dominant supplier (though ABB

may be close to that in some areas) nor a single dominant user. This would certainly argue

in favor of an enabling standard.
This is a subject that is very timely. The first OCT device on the market was from

ABB. Now it is only one of several optical measurements. In the U.S., Westinghouse (now

also part of ABB), Square-D (now part of Schneider) and 3M have all demonstrated optical
CTs (Cease and Johnston, 1990; Ulmer, 1990, MacDougall, Lutz and Wandmacher, 1991).
There are also several European and Japanese companies with products on the market.
Utilities, always conservative, feel uncomfortable enough with the new optical sensing

technology. The lack of a defined interface standard makes matters worse. It is likely that
the market for electronic or optical measurements will be retarded by the non-availability

of interface standards that people can build to. This argues in favor of an enabling standard
in the near future.

3.4 A Close Look at the Existing Standards

ANSFIEEE C57.13-1978 (American National Standards Institute, 1978), is a specification

for instrument transformers, not just for an interface. Further, it deals with both CTs and

PTs, and covers relaying service as well as metering service. The International
Electrotechnical Commission has three relevant standards: IEC 185: 1987, Current

Transformers; IEC 186: 1987, Voltage Transformers; and IEC 44-3: 1980, Instrument
Transformers, Combined transformers. These, too, are specifications for the performance

of the instrument transformer, rather than just the interface.

Since it may be effective to model a new standard after one of these, let us look at

each one, to see what it requires. In ANSI C57.13 there are 9 major sections, as follows:

°

2.
3.
4.

5.
6.
7.
8.
9.

Scope
Definitions
References

General Requirements
Accuracy Classes for Metering Service
Current Transformers

Voltage Transformers
Test Code

Bibliography

The rifles of the first 3 sections---Scope, Definitions and References---speak for them-
selves. The General Requirements have to do with air density, altitude, temperature rise
and insulation; so for our present purposes of discussing performance requirements, we can

concentrate on sections 5 (Accuracy Classes for Metering Service), 6 (Current Trans-
formers) and 7 (Voltage Transformers).

IEC Publication 44-3 (combined transformers) deals with requirements and tests that
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are additional to the requirements of IEC 185 and 186 that are necessary for a transformer
consisting of a voltage transformer and a current transformer in one case. Therefore, let
us concentrate for now on IEC 185, current transformers. This document has 15 major
sections, divided into three Chapters, as follows:

Chapter I: General Requirements Applicable to all Current Transformers
°

2.
3.

4.

5.
6.

7.

General

Rating and Performance Requirements Applicable to all CTs
Tests, General

Type Tests
Routine Tests

Special Tests
Marking

Chapter II: Additional Requirements for Measuring Current Transformers
8. General

9. Accuracy Requirements
10. Tests for Accuracy
11. Marking

Chapter III: Additional Requirements for Protective Current Transformers
12. General

13. Accuracy Requirements
14. Tests for Accuracy

15. Marking

Broadly, Chapter I corresponds to the first four sections of the ANSI standard, so

that we can concentrate on Chapters II and III, which deal separately with CTs for metering

and relaying.
Despite the extensive amount of space devoted to other topics, the essence of these

standards is, of course, the requirements in terms of accuracy. ANSI defines a number of
correction factors to help understand the requirements. The phase angle correction factor
is the ratio of the true power factor to the measured power factor. This is described as

being "a function of both the phase angles of the instrument transformer and the power

factor of the primary circuit being measured." Seemingly of more practical use is the ratio

correction factor (RCF). This is the ratio of the true ratio to the marked ratio. By way of
explanation, ANSI adds that "the primary current is equal to the secondary current multi-

plied by the marked ratio times the correction factor." The ANSI definition can be written

/p = (I_K) xRCF (3-1)

where Kn is the marked transformation ratio, Ip is the actual primary current and I, the
actual secondary current when Ip is flowing. Thus

RCF=K/K_ (3-2)

where K is the actual transformer ratio.
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The IEC document defines a current error or ratio error by the formula:

Current error % = (KJ_-/e) × 100 (3-3)

where K,, Ip and I, are as above. The difference between the two treatments is that ANSI
treats the currents as being known, and derives a "fudge factor" for the transformer ratio

so that the true primary current can be calculated, whereas IEC treats the transformer ratio

as fixed, and says that the secondary current contains an error in its estimate of the primary

current. Since ANSI uses the ratio correction factor to express the limits of accuracy, and

IEC uses the limits of current error, we need to relate the two terms.

If the actual transformation ratio K is, say, high by 1%, for a 500:5 C_ the ratio

would actually be 505:5. Equation 3-2 shows that RCF would have to be 1.01. The estimate

of the primary current would be low by a similar amount. In other words, with 5 A in the

secondary, one would expect there to be 500 A in the primary. In fact, there would be

505 A. The IEC error % is related 17 to the ANSI RCF by

error % = (RCF- 1) x 100 (3-4)

For metering service, ANSI defines 3 accuracy classes: 0.3, 0.6 and 1.2 for which the

maximum values of RCF are 1 :t: 0.3%, 1 :l: 0.6% and 1 + 1.2% at rated current. Twice

the correction is allowed at 10% rated current. The permitted phase error is related to the

RCF by means of a diagram.

IEC defines 6 accuracy classes: 0.1, 0.2, 0.5, 1, 3 and 5. These numbers are the limits

of error (in percent) at rated current. The limits of error for other current values are

specified in a table. Some of the values are combined with the ANSI diagram in Figure 3-1.

Figure 3-1
Accuracy requirements
for metering service

g

.o

lEe Accuracy Class Class 0.5 Class 0.2

100% 5% 100% 5%

2o 8o'- o lOO
gle (minutesPx,

0% 100% 10%

Class 0.6

1: ,i

o-

100%

ANSI Accuracy Class Class 0.3

17This expression is not in agreement with a footnote in the ANSI standard, which states that

"The error of a transformer, rather than the correction, appears in much of the literature. It is the

negative of the correction and is ascribed to the ratio lffIr" It seems that the terms must be

different: if the RCF is close to unity, the error is close to zero.
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Direct comparison of the limits is not possible, since the ANSI and IEC accuracy
classes at 100% rated current are not identical, and ANSI specifies the performance at 10%

whereas IEC specifies both 5% and 20%. However, Figure 3-1 shows that the requirements
are broadly similar.

An alternative presentation of the accuracy requirements is shown in Figure 3-2. In

the figure, the permitted error is shown as a function of current. The points at which the

requirements are specified have been joined (somewhat arbitrarily) by straight lines, even

though a logarithmic axis has been used for the current.

IECAccuracy Class ANSI Accuracy Class
Class0.5 Class Class0.3 Class0.6

Figure 3-2
Accuracy requirements
for metering service
as a function of current

o
,,, -_

-1_

i •

5 10 20 50 100120

Percentage of Rated Current

The general trend of Figure 3-2 is clear. At rated current a certain error is

permitted, and at lower currents the standards are more tolerant. The allowed error is
specified only at a few points because the CT can be presumed to be "well-behaved" and

not subject to abrupt nonlinearities. There has to be some allowance for nonlinearity in the
devices, which are based on magnetic circuits with saturable iron cores.

While these accuracy limits may be applicable to a low-energy sensor, a different
approach may be warranted. With an electronic output, for example, the linearity can be
expected to be excellent. The accuracy at rated current can be viewed as a matter of
adjusting the gain. (This could be as simple as turning a control.) If there is also an offset
control, the error can be made arbitrarily small at two values of current.

By thinking of the allowed error in this way, it becomes clear that Figure 3-2 is
simply a specification of the inaccuracy permitted in the scale factor. IEC standard values
of secondary current are 1 A, 2 A and 5 A, with 5 A being the preferred value. ANSI is
rather more vague: 5 A secondary current is assumed (but not made a requirement) and

guidance on how to adapt the standard to other currents is given.
Thus, to return to the central question of this section of the report, if we replace the

secondary current of 5 A with some other value (such as 5 mA) or even some other
parameter (such as 5 V), what should the choice be? And can the question of permitted

error be divorced from the question of the choice of scale factor?
I am convinced that there are indeed two separate questions. Suppose that an

interface is defined in which rated input produces 5 mA output, instead of 5 A. The sensor

accuracy can be specified by a re-written version of the specification in which 5 mA replaces
5 A. The allowed error has the same meaning, in terms of percentage. At this point,

however, there would seem to be no need to continue to connect the scale factor to the
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error limits. A device can be made 1% accurate whether the output is 5 mA or 5 A, or
even 5 V. 18 I therefore assert that the accuracy specification can be re-written independ-

ently of the choice of the interface standard. Neither Figure 3-1 nor 3-2 depends on the
fact that the secondary current is 5 A. Provided that the choice of interface does not make
it difficult to meet the required accuracy, we are free to make an independent decision.

3.5 The Black Box Approach

The "Black Box" approach, shown below in Figure 3-3, is one way of addressing the

question of a standard interface. A conversion device (of a nature yet to be determined)
is interposed between the transducer, which we can assume for the time being to be an

OCI_ and the final output.

Figure 3-3
The Black Box approach
to the interface

J_ Sensor _--_ Black Box

This interface must be
definable by manufacturer

This interface can
be standardized

l/ JLow-energy
JF JRelay or
[ IMeter or
J JComputer

It will be seen in this diagram that there are actually two interfaces. One is between
the sensor or transducer and a device labeled black box, the other between the black box

and the utility's relaying, metering or computing equipment.
The first of these interfaces, the one between the transducer itself and the black box,

is entirely defined by the manufacturer of the transducer. Thus, if the transducer is an

optical one, the interface is an optical interface. If the transducer is electronic, the interface
could be radio or electronic or an isolation transformer. The interface between the

measurement and the black box is entirely under the control of the OCT maker. Therefore,
a standard at the other interface does not hinder evolution of the technology, whether

optical or not. Further, there is no need for the manufacturer to reveal exactly what

happens at his end of the system, so information can be kept proprietary. This interface is
not the one that we want to address.

The question of interfacing the black box to the utility's equipment is the important
one. The black box becomes the responsibility of the sensor manufacturer to produce. But,
because it will be built to a known standard, it can be interfaced to any other of the utility's

equipment built to the same standard.

3.6 Defining the Black Box

The black box has the effect of separating the measurement from the application, and the

interface. This is not a question that has had to be addressed in the past, when the black

1'Verifying its calibration is another matter. This is addressed separately, in Appendix A.

47



box consistedof only a pair of wires. It wasalwaysfair to assumethat what you put in at
one end came out at the other. Now, with a black box between the measurement and the

application, it is important to know that what you put in is not degraded. What you put in
is an optical version of the current, modulated or encoded in some suitable form. What you
get out may be optical or electrical (yet to be determined) encoded in some standardized
form.

At an EPRI/NBS meeting in 1987, one of the speakers observed that "the problem

to be solved is not one of reproducing a 5-amp signal, it is one of getting information about
a current into a computer." (Hebner, 1987.) Though it passed without comment at the
time, this is an important and forward-looking statement. There may eventually be no need
to specify an analog interface. There is a good poss_ility that much of the sensing and
measurement of the future will have a digital output, so that to force the sensor back into

the analog domain simply to connect it to another digital device seems to be redundant.
That having been said, the simplest approach to solving the definition of the requirements
for the transducer interface may nevertheless be to express them first in analog terms, such

as bandwidth and dynamic range. Maybe we think in analog terms.
How to make sure the interface does not degrade the measurement? The questions

start with questions like the following: What is the frequency response of a current
transformer? What dynamic range is required of the measurement? From here, you have
to ask, How are these parameters affected by the interface, the wiring and connections
between the transformer and the relay, or by the impedance of the relay?

It seems likely that the requirements for the old high power 5-A standard or 120-V
standard on instrument transformers were never examined this way. ANSI C57.13-1978

says, on the matter of frequency response, that "the frequency shall be 60 Hz." IEC 185
merely observes that the accuracy requirements are applicable at rated frequency.

3.7 Dynamic Range

Let us spend a moment looking at dynamic range. In ANSI, the accuracy of a C_ is
typically specified at rated primary current and at 10% rated current. This implies a
dynamic range of 20 dB, very much in line with our old acoustical recordings! Voltage
transformer performance is specified at 90% and 110% rated voltage, a dynamic range (if
it can be called that) of less than 2 dB. Why should we be concerned with dynamic range,
since the devices presently used essentially don't have one?

There are several reasons for at least considering the question. First, if we can

describe a system with a truly enormous dynamic range, it may be poss_le to fix the
effective transformer ratio for all CTs. Second, if we have to resort to multiple permissible

transformer ratios, it might at least be possl_ole to keep the number small if the system

dynamic range is large. Third, if we can improve system performance without incurring a
significant cost penalty, why not!

The first reason is not as outlandish as it might seem. Currents of any magnitude

can be described by some codes; ASCII is an example. ASCII can say "1 p/f' as easily as

it can say "1 MA." (It just did, in typesetting this page!) Even if we adopt a more
conventional approach, the ratio of the smallest current that might interest us to the largest
we would expect to encounter is probably only 60 dB, the ratio of 50 A to 50 kA. Add to
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this the few additional dB required to satisfy the standard for a given measurement, and we

still may have something achievable with one definition.
Our third justification for worrying about dynamic range is that the devices we

routinely use are rather better than the standards would imply. At high frequencies, a

typical current transformer can be thought of as a perfect transformer behind a single-pole
low-pass filter, with a corner frequency in the order of 20 kI-Iz. (This is the bandwidth of
a stereo system.) And as a sensor, it is capable of good performance over a much wider

dynamic range than 20 dB, often 40 or 50 dB. Add this to the range of currents, and you

have a range that probably cannot be handled by an analog system without changing ranges.

3.8 Frequency Response

The frequency response available from optical current transducers is limited in two ways.
At very high frequencies, unwanted effects like piezo-electricity cause measurement errors.

It is usual to limit the frequency response in the electronics to much lower values.
Nevertheless, it may be prudent, in terms of setting a forward-looking standard, to recognize
that modern optics and electronics are capable of better performance than iron-based
measurements. However, it should not be forgotten that dynamic range is limited,

ultimately, by noise, and that most forms of noise increase with the bandwidth of the system.
In other words, it is very hard to maintain a wide dynamic range and a good frequency

response at the same time.
It is hard to justify defining an interface standard that maximizes performance. Thus,

we should avoid specifying that "the accuracy shall be maintained up to 1 MHz" for

example. The performance should not limit the application of the data to any lower
performance than is presently available, but it need not go greatly higher. Perhaps all that
is needed is a specification of this parameter in the device description.

The current transformer itself can reproduce signals with a bandwidth in the order
of 20 kHz. To reproduce such a signal, then, the interface must not be responsible for

degrading the information. To maintain an acceptable phase error at 20 kHz, the interface
bandwidth has to be somewhat greater. The actual need for this bandwidth will depend on
the application. There are no standards now that ensure that a given CT can be used to

monitor the chopped waveform produced by a switching power supply, for example. And
there is no standard for measurements below 0.05 p.u., even though some loads spend a

good deal of time at this level.
Burdens are described separately for metering and for relaying. They are specified

(R and L) only at power frequency. The transformers themselves are classified according
to the voltage at which the output current has fallen by some amount (usually 10%) from
the calculated value assuming linear transduction. Remember, the old standards were

written when the transfer curve was the "lazy-S" of the hysteresis of iron. Clearly, the

standard forces excellent precision on the metering C_ but recognizes the practical difficulty
of designing a CT that will work in a linear fashion over an arbitrarily large range of
currents. On the other hand, we know that the optical transducer will work over a

moderate range of currents, and can be made stable enough for metering purposes. By

considering the interface definition to be similar to a stereo system in terms of require-
ments, we are actually expanding on the state of the art. By going slightly beyond a mere
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scale factor definition, the way is open for a range of new poss_ilities.

The whole process of considering all the factors and agreeing on a new standard

could take years. It is important to get started now. The persistence of the existing

standard for 80 years implies that it is important to do a thorough job. The notes that

follow are intended to stimulate discussion, rather than to answer all the questions.

3.9 Requlrements

A new interface standard should define a reasonable way of transmitting current information

from a C_ or voltage information from a P_ in the usual power system environment (wide

range of temperature, moderate electromagnetic interference).

The existence of a standard should enable manufacturers to make compatible

equipment, and allow utilities some second-source poss_ilities. The standard itself should

not degrade the accuracy of any measuring system, and it must not limit technology

development. It should not drastically increase the price of an OC'E, and it must not force

manufacturers into revealing proprietary information. We have seen that these goaLs can

be met by the Black Box approach. But what is supposed to come out of the box?

The analog approach has the advantage of simplicity. The measurement is of an

analog quantity, after all, so this approach should require little in the way of special signal

handling. However, we really have to go beyond the mere specification of a scale factor.

There is a danger that limiting the specification to scale factor alone would lead to an

interface that failed to meet the requirements discussed above. Wider consideration than
the isolated choice of a scale factor is called for.

Analog signals have limited dynamic range (which leads one to suspect that more

than one ratio standard may be required to cover all applications) and are susceptible to

noise interference. The dynamic range limitation is present even if you use some scheme

such as FM on a high frequency carrier to reduce noise susceptibility; you can help the

noise immunity, but you cannot improve the dynamic range.

Digital interfacing has, typically, the advantage of immunity to noise interference, and

can handle an arbitrarily large dynamic range. Further, it is likely that the signal will have

to be digitized somewhere, so why not at the black box? On the other hand, digital systems

are complex, and the sampled nature of the digital representation leads to the possibility

of skew between data samples, which can cause problems in some calculations.

A summary of the advantages and disadvantages of various approaches is given in
lhble 3-2. A detailed examination follows a brief aside to consider one more factor.

3.10 Addltlonal Conslderatlons

So far, we have considered the question of the interface as if the situation was always one

where one CT was connected to one relay, or meter. This is the situation implied by

Dr. Hebner's comments in Gaithersburg. More generally, the CT will be part of a system,

involving other CTs, and multiple relays.

What this means is that one CT may be used to furnish information to a local relay

in the station yard, and the same information to another system in a control house, perhaps
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severalhundred meters away. With 5-A CTs,it may also be that the output of severalCTs
may be combined to drive one relay. And if the output of more than one CT is used as
input to a protection system,some degreeof "matching" may be required. 19 If the CTs

are digital (or if the interface is digital), there may be a need to synchronize the sampling

periods. Our proposed interface standard must not preclude any of these possibilities.

Table 3-2 Comparison of
Interface Options

Option Advantages Disadvantages

i5

(9
£3

"i

(3.

-r-
(9

G)

LL

D.

I,.

(9
GO

Easy to transmit optically.
Is self-synchronizing.
Is fairly simple to implement

Allows easy definition of scale factor.
Unlimited dynamic range: one scale
factor could serve all needs

Easy to transmit optically

Easy to transmit optically.
Simple to recover analog signal

Easy to implement.
Permits loads in parallel

Easy to implement.
Permits loads in sedes

Care is needed to achieve high

enough stability formetering.
Small dynamic range may result
in need for multiple scale factors

Difficult to implement optically,
but susceptible to noise if not
optical

Some data skew is inevitable.

May require parallel channels
in high-performance versions

Dynamic range may not be large
enough to allow the use of only
one scale factor for all CTs

Umited dynamic range because
very susceptible to noise
pickup in wiring

Limited dynamic range because
moderately susceptible to
noise pickup in wiring

It is most likely that the output of one CT will have to furnish information to a

number of locations. This is certainly attractive from the cost point of view. With a 5-A

C_ it is a simple matter to connect the various relays in series, provided the total burden

limits are not exceeded. We might allow for the same possibility with our low-energy

t_t is quite possible that the lack of any specifications for dynamic range and frequency response

has resulted in protection system failures when non-matched CTs are used together.
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interface. Another frequent variation on the one-C_ one-relay theme occurs when three

relays are connected in parallel. In many applications, the sum of the three phase currents
is zero except during fault conditions. These simple features do not work in the optical
domain. How will this influence our interface?

If we specify an interface that is implemented optically, it is certain that the signals
in the fibers cannot simply be added to generate a "sum." Except for the carefully
controlled outputs of some optical sensors, the optical power level is not particularly
relevant. And anyway, when you add optical signals, all you get is an interference pattern.

So much for adding sensor outputs. As far as driving multiple burdens is concerned,
whatever the signal representation is, it would be unwise (and expensive) to tap a fiber to
serve multiple loads. Therefore, any optical interface we choose carries the burden of
requiring conversion to the electrical world before even the simplest processing can be done
on it. But provided all the signals are according to the same standard, they can easily be

added (or subtracted, or multiplied...) or repeated as electrical signals, either digital or
analog.

Let us now turn to the question of digital or analog.

3.11 Digital Interface

If the interface is digital, the number of options is great. We can have serial or parallel
data, and we can represent the signal in a variety of ways. One poss_ility that I think

should be considered is the representation of the measured quantity in real units (like

Amps) rather than in per unit.
Consider: a sixteen-bit integer representation can handle 65,535 A (216-1) with a

resolution of one amp. Note that a 16-bit specification for the interface does not require

the use of a 16-bit A/D convertor. Suppose you wished to use an 8-bit A/D with an

instrument rated at 2000 A and leave a factor of eight for "headroom." If the system were

parallel, the 8-bit A/D convertor would be connected to bits 6 through 13 of the interface

(see Figure 3-4). Bits 0 through 5 would be zero because they were not used. Bits 11

through 13 would be available, but would normally be zero because they represent

overcurrent. Bits 14 and 15 are not used. The system resolution at any single sample would
be 64A.

This kind of approach would lend itself very well to a parallel digital interface. This
interface has the advantage that, for any given bit rate, the delay between the sampling

instant and the reception of the data word is small. However, a multi-bit parallel digital

interface is cumbersome, and is difficult to transmit optically. A serial digital interface is

ideal for optical transmission, but necessarily involves some complexity to encode and
decode.

3.11.1 Sampling

The question of how many bits per sample, and how many samples per cycle--beware of
confusing samples per cycle and samples per second--is highly dependent on the
application. EPRI report EL-1601 (Schweitzer et at, 1980) describes a revenue metering
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system that takes only 4 (12-bit) samples per cycle to exceed the precision required for

billing. The ASEA digital OCT developed by Adolfsson's group takes rather more: about

16 samples per cycle (Adolfsson, Einvall, Lindergh, Samuelsson, Ahlgren and Edlund, 1989).

Although it is sometimes stated that a faster sampling rate is needed, or that a 16-bit

converter must be used, it is by no means clear that these extremes are justified, z°

Figure 3-4
Possible digital representation
of current
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The resolution problem with an A/D converter that has few bits is not as serious as

it might seem. In the example I gave earlier, a resolution of 64 A resulted from the use of

an 8-bit converter. The obvious, brute-force method of improving the resolution would be

to add bits. A/D converters with 12 bits are fairly commonplace. Converters with 16 bits

can be made, though they are expensive. The use of either would improve the system

dynamic range. There is an alternative, however. The quantization error (64 A in our

example) has a statistical distribution (the expected error is zero) that permits a simple

averaging process to reduce its effect.

This is a simple form of a digital signal processing technique known as "noise

shaping," that is now finding application in compact disc players (for D/A conversion). The

approach is based on delta modulation, which calculates a signal according to its change

from the previous sample. (Appendix B describes delta modulation. Appendix C describes

noise shaping.)

Consider the information contained in a sampled signal. If a signal is sampled in two

different ways, one with twice as many samples per second as the other, but with one less

bit per sample, there is no difference in the amount of information the two representations

contain. I said above that a CT had a dynamic range of 40 or 50 dB at best. It happens

that an A/D converter of 8-bit resolution will give a dynamic range of 48 dB. So if a

converter of this quality is used, sampling at the Nyquist rate, the signal will contain all the

Z°The device described by Adolfsson et aL uses a 10-bit A/D converter in combination with a

prescaler to achieve a dynamic range equivalent to a 17- or 18-bit converter. This performance is

justified by the desire to meet the requirements of both metering and protection in a single system.
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information available at the output of a conventional CT

If a CT really has the frequency response of a lag filter with a corner frequency of
20 kHz, it could be completely represented by sampling at 44 kI-Iz, with 8 bits per sample.

(44 kHz is a standard rate that happens to be just slightly above the Nyquist rate for the
device in question.) As a serial data stream, a channel with at least 352 kb/s capacity would
be required for communication. (In practice, synchronizing and error correction would
increase the requirement.) For every bit added to the converter, the data rate must be
increased. At 12 bits, the rate is therefore 528 kHz, and at 16 bits the channel speed

requirement is over 700 kHz.
44 kHz and 16 bits are the numbers for one of the two channels on a digital compact

disc. The specifications for CD make it very clear that low distortion, wideband sound
reproduction is achieved. The linearity and frequency response far exceed any needs

presently met by CTs. It is therefore urged that any statement that might be made to the
effect that more than 8 bit samples, or more than 44 ksamples/s are needed for a CT
interface be viewed with skepticism. There might be cases, in research for example, of
applications that require measurements of greater bandwidth or dynamic range, or
sometimes both. But such performance far exceeds the performance of CTs developed from
designs made 80 years ago, when current transformers were hand wound, with wire insulated
with silk.

3.11.2 Problems with Digital Interface

While parallel digital is conceptually simple, in practice it can be cumbersome in terms of
cabling. Further, the multiplicity of wires leads to some increased susceptibility to
interference. The fact that serial data can so readily be transmitted optically argues in favor
of that approach. An optical digital signal can be widely distributed inside a switchyard,
without concern for interference.

There are two problems with digital serial. One is that there is necessarily a delay
between the sampling instant and the reconstruction at the receiver of the complete data
word. The other is that serial data must necessarily be encoded and decoded: start and stop

bits must be added, as well as error checking bits (such as parity) and error correction bits.

The Philips/Sony serial digital standard used in CD players might be used, because that
would be suitable in terms of frequency response and dynamic range. However, the
complexity and inherent time-lag of that approach may rule it out.

Bear in mind that the applications for OCTs, and therefore for this interface

specification, include high-speed large dynamic range measurements for relaying for high-
voltage systems, high-precision measurements for billing in high-voltage systems, and low-
cost low-quality measurements for the distribution system. It seems as if we have a set of

incompatible requirements. If the interface has to be made as good as the most stringent

application demands, this may be an expensive proposition, which would be unfair to the
manufacturers of low-cost hardware for the distribution system.

There may be a way round this problem. I will address that next.
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3.11.3 A Modified Black Box

The expense of serial digital lies in the need to encode additional information such as

framing data and error codes with the signal at the transmitter, and decode it in the

receiver. If a low-budget system is designed in which the information is not actually

required, as in a distribution system application, this is an unwarranted expense.

The solution is to adopt the philosophy of color T_, or FM stereo: start with a

minimum system, and add features that do not necessarily have to be used. Thus, if you

want to save a little money, you can buy a monochrome TV, or a mono-only receiver. The

authorities that regulate such things (the FCC in the U.S.) have seen to it that the more

complex signal being transmitted is compat]_ole with the simpler receiver.

In our situation, this approach would mean that we start with a simple digital serial

interface, and add features such as error detection/correction coding, or synchronization

inputs, in a parallel channel.

Strictly speaking, from a cost point of view, it is time-division multiplexing that we

should avoid. This way, low-end systems are not faced with the cost of stripping unused

information out of the data stream. Color TV and FM stereo are frequency-division

multiplexed, essentially in parallel in the frequency domain. In an optical system, we have

the additional (but not inexpensive) alternative of wavelength-division multiplexing.

However, we are not forced to multiplex our signals. It would likely be more cost

effective to design a hybrid interface of several serial connections in parallel.

Although I have expanded the representation of the OCT-to-black-box interface in

the diagram (Figure 3-5) to show two-way information, the details are not our concern. The

black-box-to-user interface, here shown as four lines, is the one to specify.

Figure 3-5
Modified Black Box interface

_._ Sensor

Black Box

Low-energy I
Relay or J
Meter or I
Computer I

As well as the output signals, one or more input signals may need to be defined. For

example, the input line might be needed in order to synchronize the sampling instant at a

number of devices. We might end up with two or perhaps as many as four separate serial

connections: data out, error coding out, timing information out; synchronizing signal in. In

a high-performance system, the full set of information might be used. In a low-budget

system, perhaps only the data output has to be implemented.

3.12 Analog Interface

If the interface is analog, should the measured quantity be represente.d by a voltage or a

current? Either is easy, and both are appealingly simple at first sight.

Suppose, for an example, that we decide to represent rated primary current by a

signal of 100 mV. ANSI C57.13 talks about the accuracy of a relaying CT at an overload
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of 20 times. (A ratio error of 10% is permitted.) This is a 2-volt signal, not unreasonable
for solid-state electronics. The same standard discusses the required accuracy of a metering
CT at 10% load. In our example, this would be 10 mV. There's a problem here. It may

not be reasonable to expect a 10-mV signal to be transmitted faithfully in the

electromagnetic environment of a high-voltage switchyard or a power station. And for
metering purposes, the volt-drop in interconnecting wires cannot always be neglected.

The situation is a little better if we use, say, a 10-mA signal to represent rated

primary current. At the high end our electronics is called upon to generate a fifth of an

amp, which is acceptable, but at the low end we are dealing with a 1-mA signal. This is too
small to be taken seriously if it has to be transmitted any distance in station environment.

3.12.1 Problems with Analog

While the complexity of the digital world argues in favor of an analog specification for the
interface--and at least one manufacturer has opted for this solution--there may be

problems. Power stations and substations are often noisy places, especially at critical times.
Wiring from an OCT black box in a switchyard to a relay in a control house would be
susceptible to interference, and the relay would be prone to false operation. The only way

an analog interface can solve the noise/dynamic range problem is for the interface wiring

to be very short. Ideally, one would locate the black box inside the relay housing.

It is important to recognize that this is a non-solution. If the black box has to be
Inside the relay box, why have a black box at all? You might just as well make a relay/OCT
combination, with dedicated hardware. The very purpose of the communication standard

we are trying to develop is to avoid the need for measuring and relaying systems to be
bought as one piece. By defining the properties of information exchange at the physical

boundary of the hardware, we allow for independent development of the hardware on both
sides of the interface. It seems that the noise problem of the direct analog interface just

about precludes that.
Delta modulation represents a class of digital communication means that might be

termed "indirect." (I class it as digital because the amplitude is fixed and the timing of the
output pulses is quantized by a clock. I classify FM as analog because the instantaneous
frequency is not quantized, but can change infinitesimally.) Indirect analog communications,

such as frequency modulation, are capable of handling signals over a moderately large
dynamic range, and can be designed to have a frequency response that will cover any

reasonable power system requirement. The resulting system is relatively simple, even

though careful design may be needed to achieve the required accuracy over the temperature
range usually demanded of power system components.

I regard this option as an excellent one for our application. The system is fairly

simple, and lends itself to serial transmission, ie, it adapts readily to an optical system.

3.12.2 Frequency Modulation

The use of an FM carrier is an approach that might meet all our needs. With an FM
system, the carrier frequency can be chosen to simplify filtering, and the signal can be
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amplitude limited before demodulation, to help preserve the noise immunity. With a

reasonable depth of modulation, the linearity of such a system can be excellent. The

method also lends itself readily to optical implementation, and in this form the noise

immunity is excellent.

The dynamic range of an FM system can exceed, say, 65 dB, if suitable care is taken

in the design. FM is not particularly complex, and needs only a modulator, a demodulator

and some kind of filtering, so the advantage of extreme simplicity is not greatly reduced.

The filtering requirements arise from the need to reduce the carrier energy remaining

in the analog signal after demodulation. The spectrum of the demodulated signal typically

contains strong lines at the carrier frequency and its harmonics. The filtering requirements

can be simply estimated. A 2-pole filter rolls off at 40 dB/decade, so that a frequency ratio

of 1000 allows for a theoretical amplitude reduction of 120 dB. In practice feedthrough,

noise and other considerations limit the feasible reduction to 60 or 70 dB.

It would be only moderately difficult to make such a scheme work well enough, over

the usual temperature range, for a metering system. Quite ordinary components can be

used, and the stability can be made arbitrarily good. This is the approach we have used at

JPL in the telemetry for our field meters, achieving better than 1% accuracy (after

temperature compensation) over a range of 80°C.

3.13 A Perspective

We have talked about systems that have a dynamic range of 100 dB, five orders of

magnitude. We have mentioned sampling rates in the megahertz region. It is important

not to lose sight of the fact that today's systems perform well enough with limited

specifications. The information presently available from a current transformer has a

frequency response that may contain no useful information above 1 or 2 kHz, has a dynamic

range of only a few dB, and is transmitted successfully over circuits that would be scarcely

adequate for a telephone.

We would not want deliberately to degrade the performance of our proposed low-

energy system to this level, but we should be prepared to ask why if we start to work on an

expensive interface simply because it has greatly improved specifications. If the job does

not call for anything remarkable and new, improved performance is not justified.

When I started to prepare the material that went into this section of the report, I had

no favorite solution. In the process of putting my ideas in order, I have become persuaded

that there/s one approach that might well be good enough to meet all our reasonable

requirements, and is almost as simple to implement as the direct analog interface it

replaces. Frequency modulation with a carrier frequency in the order of, say, 10 MHz,

would be quite straightforward to implement in an electrical or optical version. Inexpensive

optical components (such as LEDs rather than lasers) could be used in an optical version.

Since the highest modulation frequency of interest is in the order of 1000 times lower in

frequency, filtering residual carrier energy from the demodulated signal should be simple.

It is uncertain whether the fact that the demodulated output signal is analog should

be regarded as an advantage or a disadvantage. Within the confines of the interface device,

where it can be shielded from external interference, it is probably not a disadvantage. The

fact that analog signals lend themselves readily to interfacing directly with existing metering
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and protection devicesthat use low level signals must be considered an advantage. Analog

signals can also be adapted to the simple kinds of arithmetic required of CTs: typically no

more complex than summation.

In an attempt to understand and formalize my preference for FM, I have developed

a simple spreadsheet that enables the quantification of the subjective judgments of what is

important in the interface specification and how well the requirements are met by the

various options. This is described next.

3.14 Figures of Merit

One way to compare the alternative implementations of an instrument interface is to derive

for each a Figure of Merit. The approach shown below simplifies the procedure by separ-

ating the requirements from the abilities of the implementations to meet them, and

automating the calculation.

Suppose there are n separate factors that qualify as requirements. Examples could

be dynamic range, noise immunity, and ease of interconnection. These could be ranked in

importance by assigning each a score or weighting, say between 0 and 10. Together the

rankings could be written as a matrix R of dimension I xn.

Now suppose that the performance of a particular interface is judged as to how well

it meets these various requirements. A parallel digital interface, for example, might score

high in terms of dynamic range and noise immunity, but low in terms of ease of intercon-

nection. The opposite would be true for a serial analog representation. The overall value

of the two approaches can be compared by multiplying the score each achieves in meeting

a given requirement by the weighting of that requirement, and forming the sum of the

products.

Each implementation approach can be considered to have a performance matrix P,

of dimension n x 1. By expressing the requirements and performance in this way, it is clear

that a product RP can be formed that results in the required scalar quantity or Figure of

Merit, FOM = _[_RjPi.

Although spreadsheet programs are not particularly adept at doing matrix algebra,

the required expressions can be programmed into the appropriate cells to form a handy,

interactive calculator for Figures of Merit. The results of such a calculation are shown in

Table 3-3, which of course reflects the biases of the author.

There may be one alternative worthy of serious consideration. Recently, the world

of hi-fi has put a new optical fiber interconnection on the market. I have (so far, and

despite considerable effort) been unable to ascertain its specifications, but it is inconceivable

that in most respects it would not easily do our job, at minimum cost. Stereo is a far more

demanding application than ours: and the demands have evidently been met at low cost.

(How much would you spend for a stereo?) Though I now favor FM, I am trying to find
out more about this interface.
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Table 3-3 Printout of

spreadsheet for Figures of Merit

REQUIREMENTS WEIGHTINGS

2 Dynamic Range

3 Frequency Response
7 Cost

9 EMC in yard

5 Multiple loads

IMPLEMENTATION SCORES

ANALOG DIGITAL

serial parallel FM serial parallel delta

Dynamic Range 5 5 5 9 9 6

Frequency Response 5 5 5 4 6 4
Cost 8 8 7 4 3 5

EMC in yard 2 1 10 10 10 9

Multiple loads 7 7 5 5 5 5

FIGURE OF MERIT 134 125 189 173 172 165

3.15 A Process

The question of the application cannot be completely separated from the question of the

interface, even though this is suggested by the Black Box approach. Nor is it likely that all

the issues have been addressed satisfactorily in this report. One way the matter might

proceed is outlined in Figure 3-6.

If agreement can be had on the need to create a new standard, and on the usefulness

of the black box approach, then the selection of the interface (shown as the last two blocks

in the Figure) might proceed as follows:
• The requirements are studied. This work takes into account the various applications

(such as billing, protection, operation) and the features of the existing high-power standards

(such as their accuracy and noise immunity). From this is synthesized a set of interface

requirements in terms of accuracy, dynamic range, bandwidth, noise immunity, maximum

time-lag etc.
• This set of interface requirements is publicly criticized. It is issued as a paper by

IEEE PES. Comment is solicited in committee meetings. Other organizations, such as the

IEEE Standards Coordinating Committee on Photonics (SCC-26), are involved.

• Ways to implement the requirements are studied. (Likely candidates should be

included in the IEEE paper, so that comment can be sought.) There are many standards

akeady in existence that might be suitable, but a new one may be required. Ultimately,

suitable implementation definitions are issued as IEEE guidelines, then recommended

practices, then Standards.

The first step, the requirements definition, is crucial. No such study seems to have

been undertaken, as far as I know.

It is, I believe, important that any replacement for the old standards should be very

carefully considered. The manufacturers of relaying equipment as well as instruments

should be involved. Without doubt, the work would benefit from utility involvement. It has

to be very clear to all concerned that devices built to the new standard perform as well as

devices that were built to the old standard, even if the performance requirements were

never previously identified.
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Figure 3-6 Flowchart showing
route to an interface standard
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3.16 Concluding Remarks

This section of the report has examined some of the ways a low-energy measurement

transducer could be interfaced to relaying or metering equipment. The options are many.
At the broadest level we must choose between analog and digital; serial and parallel.

If we select digital we must answer further questions regarding the number of bits

per sample, and the number of samples per cycle. If the choice is analog, can the
equivalent questions be ignored: the dynamic range will be affected by the choice of nominal
scale factor, and the frequency response could be limited by the electronics. No clear

answer seems to have emerged yet.
If we are successful in defining a new interface, low-energy instruments may someday

be responsible for the demise of the 5-A standard.
Not before time.

6O



APPENDIX A

CALIBRATION OF CURRENT TRANSFORMERS

HE COMMENT is often heard that optical current transducers will be hard to
calibrate, should this soWhy be? What is different about an optical CT compared to

a conventional CT that will make it difficult to calibrate? After all, a simple set-up like the

one shown in Figure A-1 should surely do the job.

Figure A-1
Straightforward method for
current transducer calibration

I

The primary current is measured, presumably by means of a standard CT as shown,

or perhaps using a shunt resistor. The output of the test CT is measured with a good

voltmeter or ammeter. The method is simple. The problem is that all the uncertainties of

the individual measurements add to the calibration uncertainty. Thus, even if the primary

current is measured through a standard C'I; the uncertainty of the standard CT is equivalent

to uncertainty in the value of the primary current. The situation is similar as far as the test

CT output is concerned. The OCT calibration uncertainty therefore includes the

uncertainty in the standard C_ the uncertainty in measuring the output of the C_ and the

uncertainty in measuring the value of the output of the device under test. Nevertheless,

Papp and Harms (1980) used an approach similar to this to investigate the errors in a

magneto-optic current transducer, and made measurements with resolution an order of

magnitude better than the error limits of IEC 185. The overall calibration is effectively

done with respect to the output of the standard Cq_ however, and errors in this device will
lead to undetected errors in the calibration.
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Cease and Johnston (1990) report long-term experience with a magneto-optic current
measurement in an outdoor substation environment. The data from the optical

measurement are compared with data obtained at the same time from a conventional
current transformer. There is evidence of very slow drift, of small magnitude, between the

two measurements, and this has been attributed to the effect of temperature on a seasonal

time scale. The problem is that there is no way of distinguishing drift in the optical
transducer from drift in the current transformer.

Figure A-1 is not a diagram of how calibrations are usually done. In general,

methods for calibrating measurements or units can be classified into two groups: direct and

comparator. Within these groups, the calibration can be further subdivided into null

methods and deflection methods. Direct methods do not require a standard of the unit

being calibrated. An example of this approach is the Lorenz method for determining
resistance, which fixes the resistance in terms of parameters such as length and rotational

speed. Similarly, current can be defined in terms of the force between two current-carrying

conductors: the Rayleigh force balance embodies this principle. A comparator method

requires another standard: it used to be that length was determined with respect to a meter
bar, for instance. Mass is still determined by comparison with a standard mass, kept in

S6vres, in France.
Deflection methods rely on the indication on some instrument, whereas null methods

are designed such that the only point on the indicating instrument that has to be known

accurately is the zero. This has seemed, over the years, to have enormous attraction, and

has given rise to many elegant techniques. The Lorenz method of current measurement is
a (direct) null method. The bridge methods of measurement are all (comparator) null
methods.

A comparator method for calibrating a current transformer requires, of course, a

standard current transformer (or other similar network) with at least a similar ratio to the
one being calibrated. ANSI recommends the use of a current comparator method as being
capable of the highest measurement accuracy, with uncertainties in the order of a few parts

per million. Consider the arrangement shown in Figure Ao2.

Figure A-2
Current transformer accuracy test
with current comparator

I[ "O-m

1 TRANSFORMER +
UNDER TEST
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The method is a comparator/null method. The current comparator is basically a
current transformer operated with no net flux in its core, so that many of the defects of the

magnetic circuit are eliminated. It consists of a toroidal core with a number of windings.
Nearest the core is the detector winding, whose purpose is only to detect the condition of
zero flux in the core. This is covered by a compensation winding. There follows a magnetic

shield, essentially a concentric magnetic core for the current transformer with its primary
and secondary windings on the outside.

If the circuit is balanced, there is no flux in the current comparator. Neglecting the

compensation winding, this means that the primary ampere-turns and the secondary ampere-
turns cancel. There is no volt-drop across the current comparator, so the burden seen by

the test CT is not affected by it. If the test CT is not perfect, a small error current will flow
in the secondary circuit, and result in a flux in the comparator core. This is canceled by the
compensation winding, which carries a current derived from an RC network. (The switches
shown in Figure A-2-allow positive or negative errors to be compensated.) At balance, the

error in the test transformer is given by

where the real term gives the ratio error and the imaginary term the phase angle.

Several important differences from the method of Figure A-1 emerge.
• The method is a null method. No quantity except zero has to be measured precisely
in order for the device under test to be calibrated. Indicating instruments are usually

accurate at zero.

• Not even the primary current has to be measured accurately. It might be reassuring
to know that the calibration was done at some particular current, but knowledge of the
current is not essential to the calibration.

• Uncertainties in the measurement of the resistors shown in Figure A-2 contribute

only to uncertainties in the measurement of the error. In other words, these become
second-order effects. If the two resistors are 1% components, and the error can be given
as, say, 0.1%, then the ratio is known with an uncertainty 50 times less than 0.1%, or
20 ppm.

There are a number of variations on this theme. In one, an auxiliary transformer is

used with the current comparator. In another, a standard current transformer is used along
with the current comparator. There is also a direct-null method, a simplified version of

which is shown in Figure A-3, in which the ratio is expressed in terms of the ratio of two
resistors, and the phase angle in terms of a resistance and a mutual inductance. (Mutual
inductance standards can be designed such that the value can be calculated from the

dimensions alone.)
The detector is nulled by adjusting R2 and the mutual inductance M. The ratio is

then given by R_/Rx, and the phase error (in radians) is very nearly _I/R2. Since it is the
ratio, rather than the error, that is found, the method is less forgiving than the current

balance of Figure A-2.
Each of the various methods mentioned above has its own advantages and disadvant-

ages. Some methods are viewed as inherently capable of greater accuracy than others.
Some techniques impose limits on the test CT burden. All require the generation of a large

63



primary current if the calibration is to be done under realistic conditions. Recognizing that
the main source of error is the magnetizing current, the ANSI and IEC specifications permit
a different kind of test, in which the secondary of the CT is energized, and the primary is

open circuit. The resulting current should not exceed the limits for a parameter called the

"composite error" defined by the expression

f
100/ 1 r . • 2

yfo(K.Ifip) dt (A-2)

where the variables have the meanings given in Section 3. Unfortunately, it is not permitted

to use this test as an accuracy test for metering applications.

Figure A-3
Current transformer accuracy test
with direct-null network

A.1 Applicability to Low-Energy Sensors

, R=

TRANSFORMER
UNDER TEST

Can the calibration methods used for CTs be applied to low-energy sensors? An optical or

electronic sensor might indeed have a current output. Considered as a C_ such a device
would have a distinctly unusual ratio. A normal CT might have a ratio of 5000:5 for

example, the output being 5 A for 5 kA input. An optical CT might produce 5 mA under
these conditions, an effective turns ratio of 106. While the number of turns in a current

comparator could be counted with sufficient precision, and a million-turn current balance
probably could be made, it is unlikely that a magnetic circuit with so different a pair of
windings in the primary and secondary would not have serious defects. Cascading two trans-
formers would not help: the current balance is more than just a simple transformer.

Eddy So of Canada's National Research Council (the equivalent of the U.S. National
Institute for Standards and Technology) has developed current comparator techniques for
the calibration of low-energy instruments, and has written extensively on the topic. In a

paper presented at an IEEE Power Engineering Society Meeting in India in 1990, Dr. So

reviewed the development of calibration instrumentation at NRC.

64



First, a circuit called a transimpedanee zl is described. By using a current

eomparator approach, a circuit is developed in which the small defects (typically due to
temperature dependence) in the electronics can be compensated by a feedback arrangement.

The result is a circuit that produces a voltage output that is proportional to the current

input, and that is very stable. The circuit is not simple, consisting of a current transformer
(to reduce the current in the electronics), a current balance, and a step-down transformer
(to further reduce the current in the electronics). A feedback system is used to null in the

circuit output the error detected in the current balance. Defects in many of the components
are reduced by the gain of the feedback circuit, so that the main sources of uncertainty due

to components are the input current transformer and a standard resistor.
Complex and advanced as it is, the details of the transimpedanee circuit need not

concern us here because for calibration purposes it can be regarded simply as a surrogate

optical current transducer. The problem we are trying to solve (and indeed the problem So

was addressing) is not how to build it, but how to calibrate itl
The calibration circuit used by So is based on an additional current transformer and

an additional current balance. The current balance is used to compare the primary current

with a current derived from the output voltage of the transimpedance circuit by means of
a reference resistor. (A capacitor is used to correct phase defects, but these can be
neglected for the time being.) A simplified version of the calibration arrangement is shown

in Figure A-4.

Figure A-4
Calibration circuit

using current balance

TRANSIMPEDANCE
CIRCUIT

UNDER TEST

CURRENT BALANCE

!lifo-/

REFERENCE

RESISTOR

At balance, the ampere-turn contributions from the CT and from the transimpedanee

circuit being calibrated cancel one another. The detector null depends therefore on the
ratio of the _ the value of the reference resistor, and the turns ratio of the windings in
the current balance itself.

nThe IEEE Dictionary (American National Standards Institute, 1977) allows the use of the word
impedance to mean either the ratio of the voltage to the current in a circuit, or the physical device
that causes the effect. It does not mention the same dual meaning in association with the word
transimpedanee, which is defined as the ratio of the voltage at one pair of terminals of a network
to the current across a different pair. I shall therefore use the term transimpedance circuit to denote

the physical device.
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Note that these are all first-order effects. The circuit compares the ratio of the

device being calibrated with the ratio of a standard CT The ratio of the C_ and the value

of the reference resistor are external to this process, and their uncertainties add directly to

uncertainty in the calibration of the ratio of the device being tested. =

It is my opinion that, in spite of the fact that the calibration approach retains the use

of a current balance, it retains only a few of the advantages. It is true that the value of the

primary current is not measured, but there are still two components, the CT and the refer-

ence resistor, contributing directly to the calibration uncertainty. Only the fact that the

calibration is a null method makes it preferable to the brute-force approach of Figure A-1.

It seems that a simpler, non-magnetic method could be devised that is at least this

good. A bridge approach might offer a solution. Assuming that the optical current trans-

ducer produced a voltage output (as does the transimpedance circuit), one poss_le

implementation is shown in Figure A-5.

Figure A-5

Bridge-resistor method for calibrating
optical current transducer

R

J

Although the method indicated in Figure A-5 is intended to be a null method (the

output voltage V is not used in the calculation), the detector is more than a simple null

detector. Assuming that the resistor R is non-inductive, the circuit will not balance unless

there is no phase error in the OCT. Unless the resistor is "padded" with inductive or

=It is not difficult to show that if a quantity y is the product of two parameters, u and v, each

of which can be measured with uncertainty Au and Av respectively, the maximum uncertainty in y
is

Ay Au Av

y u v

A similar expression holds for quotients, and for extended products. However, if the various

uncertainties are uncorrelated, a statistically reasonable estimate of the uncertainty is

Because of the squaring of the individual contributions to the uncertainties, the largest will tend to

dominate the total. For example, with four terms contributing to the total, with magnitudes 0.3%,
0.1%, 0.1% and 0.1%, the total uncertainty is less than 0.35%. A fuller discussion of this topic is

presented by I-Iolman (1978).
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capacitive trimmers, the detector has to measure any resultant phase error. And since no
adjustment has been shown on the resistor, the detector will have to measure the ratio error

too. The method is thus not quite a null method. However, the deflection of the detector
involves only a second order uncertainty as far as the OCT is concerned.

The uncertainty in the OCT ratio, rather than in the error, depends on the
uncertainty in R. This will be the dominant uncertainty. Knowing the value precisely

sounds simple, until it is realized that R is a very unusual device. If the OCT produces a
5-V output, the volt-drop across R must be 5 volts. If the primary current is 5000 A, R must

have a value of 1 mO. However, it is dissipating 25 kW. This means that a precision non-

inductive resistor must be used that will be stable (or whose temperature effects are well

known) at relatively high values of power. In spite of the difficulties, this may be a

reasonable approach because it may be simpler to calibrate a resistor to the required
precision than a reference CT

If the resistor is replaced by the combination of a standard CT and its burden, the

method is analogous to So's calibration approach shown in Figure A-4, except that the
current balance is replaced by an electronic detector. This is shown in Figure A-6.

Figure A-6
Bridge-CT method for calibrating
optical current transducer

BURDEN
RESISTOR

[ ,)

OCT UNDER TEST

If a current transformer can be calibrated with sufficient accuracy (by conventional
means) with a burden connected, instead of a short circuit, then the method indicated in
Figure A-6 should be at least as good as the current balance approach shown in Figure A-4.

If it happened that the OCT produces a current output instead of voltage, a load resistor
(reference resistor) may be used to produce a voltage output. Of course, uncertainties in
the value of the reference resistor add directly to uncertainties in the calibration, but this

would not render the approach overwhelmingly unattractive. Figure A-4 shows that the use
of such resistors in this application is acceptable. (If the electronic output of the optical
sensor produced instead a digital signal, some new way of calibrating the CT must be found.)
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A.2 Digital Techniques

Digital techniques may offer further help. If the detector in Figure Ao6 is replaced
with an A/D converter, sampling the difference between the voltage across the resistor and

the output of the OC'I:, it would be a simple matter to ascertain what the error in the OCT

was. And since it would be the error that was measured, errors in the digital measurement
would be second order effects.

However, A/D converters can be made with very good performance, particularly in
terms of linearity. For example, an error in the least significant bit of an 18-bit converter

represents less than 4 ppm. This justifies their use in direct measurements of the outputs
(rather than the difference between the outputs) of the circuits of Figures A-4 and A-6.

The output voltage Vin Figure A-4, and the voltage across the resistor R could be sampled,

using a multiplexed converter. A high-accuracy voltage source could be sampled, too,
removing any need for extraordinary precision (as opposed to linearity) in the A/D

converter. Although this is a deflection method, it is poss]_ole that these measurements
could be made with sufficient precision that the dominant uncertainty in the calibration was

the value of R. The advantage over the bridge method is that the value of R could be
reduced significantly, thereby reducing the power dissipation, and making the resistor more
practicable.

The entire calibration could then be controlled by computer, with data analysis

yielding the effective ratio and phase errors. It is poss_le that the OCT could be further

characterized, without great additional effort. For example, an impulse or switching test
might be used to deduce the frequency response of the OC'I_, and its linearity might be

deduced from measurements made at more values of current than are required by the
present test protocols. If these measurements were all done in a matter of a cycle or two,
the power dissipation in the standard resistor could be kept very low.

A.3 Concluding Remarks

The calibration of optical transducers, as opposed to conventional current transformers,

implies that the favored current balance method might as well be abandoned. In calibrating
a conventional current transformer, this method has the advantage that the ratio error is
determined in a device operated with zero net flux. Only with an additional CT (not

operated at zero net flux) can this feature be retained in the calibration of an optical
current transducer. The uncertainty in the CT ratio and in the value of a resistor then add

to the calibration uncertainty.
Making a precise, stable optical CT has been a challenge taken up in a number of

manufacturers' laboratories. Calibrating it is the next challenge, presumably to be addressed
in the national standards laboratories.
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APPENDIX B

DELTA MODULATION

OMETIMES known as single-bit A/D conversion, the delta modulation technique wasoriginally developed by the telephone companies to generate a low-bandwidth serial

data stream from analog data. If FM transmission can be termed indirect analog, perhaps

delta modulation can be called indirect digital. It has the advantages that it is simple to

implement and that signal regeneration is self-starting without the addition of framing
information to the data.

In its simplest form, the method works as follows. At the modulator, the input signal

is compared with the output of an integrator. If the signal is higher, the input to the

integrator is such that its output tends to increase. If the signal is lower, the integrator is

made to decrease. This comparison is performed at a constant rate (by means of a clock)

so that the maximum data rate is simply the clock frequency. This rate should be at least

twice the highest frequency of interest, but is a much lower frequency than required for A/D

conversion. Figure B.1 shows the approach.

RECONSTRUCTED
CLOCK ANALOG OUTPUT

ENCODER DECODER

RECONSTRUCTED

ALOG OUTPUT

ANALOG INPUT "_"_

CLOCK IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

DIGITALOUTPUT

(a) Implementation (b) Waveforms
Figure B.1 Simple delta modulation
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To recover the signal in the analog domain, the data stream is applied to an

integrator. This integrator tracks the one in the modulator, and the reconstructed analog

output is comprised of a series of constant slope ramps in each direction.
The chief drawback of the method is its limited dynamic range (which is a function

of the clock frequency). Input signals must be frequency and amplitude limited. Changes

to improve the situation both reduce the simplicity of the method and increase the bit rate
of the data stream.
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APPENDIX C

NOISE SHAPING

OISE SHAPING operates in the digital domain. By increasing the sampling rate, and
using a kind of negative feedback, the number of bits required for a given signal-to-

noise ratio at the output can be reduced. Consider, for example, the audio world. A

compact disc recording has a dynamic range of 96 dB. To take advantage of this, the player

must have a signal-to-noise ratio of 96 dB. This requires at least a 16-bit converter:

20 logx0(2 x6) = 96. This is extremely difficult to do. There are two problems. Imagine that

the signal at some instant is represented by a number consisting of a zero and 15 ones. A

tiny increase in the signal would change the number to a one followed by 15 zeroes. For

the reverse process to happen properly, ie for the recovered analog signal to be accurate,

the switch from 011111... to 100000... must have the same relative effect on the output as

the switch from ...000000 to ...000001. The second problem is that even if the steady levels

can be made correct, the transition process must result in no switching noise.

The idea that it is the relative effect that is important leads to reconsideration of delta

modulation. Suppose, instead of trying to reconstruct an analog signal directly from a 16-bit

data stream, we re-quantize the data first, in such a way as to reduce the number of bits

required. Since 12-bit converters are relatively commonplace, we could consider reducing

the 16-bit data to 12 bits, by truncating or approximating the 4 low-order bits. The first

effect of our approximation will clearly be an increased quantization error, or reduced

signal-to-noise ratio. The S/N ratio is decreased to 72 dB; better than a cassette player, but

a long way short of the available quality. The problem is that we have produced only one

approximated output number for each more precise input number. If--anticipating the

result we increase the sample rate by a factor of 24, or 16, we would produce just over

700,000 samples per second from our CD data, instead of the input rate of about 44,000.

Figure C.1 illustrates the case of reducing the number of bits by 2. The approxi-

marion during the interval t4 to ts of our (N-2)-bit converter (Figure C.l(b)) to the input

N-bit data (Figure C.l(a)) may be low when the signal is requantized with 2 bits fewer

resolution. The next sample (ts to tl2) may be high, and the next low. In a high-frequency

version, however, if the first sample is low the second can be forced high, as in Fig. C.l(c).

The other outputs are chosen such that a 4-bit word is produced during the interval t_ to

t8 to replace the single high-precision sample in such a way that the average level of the
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output word is the same as that obtained by a high-precision conversion. The difference is

that a relatively low-quality converter and a filter replace the costly 16-bit converter. (Note

that we are not producing a digital word in the conventional sense to represent the original

sample. In the 4-bit word of our high-rate output, the first data bit produced has the same

weight as the last.) The average quantization error is zero, and the filtering process is

simplified because much of the energy of the harmonics of the signal now occurs at 4 times

the original sampling frequency.

(a) N-bit Input

:::::: _

IIIIIIIIIIIIIIII IIIII
t t t t t t

0 4 8 12 16 20
TIME

(b) Output of (N-2)-bit Quantizer

m
w ...............

i!!!!....
m

I 11 I I I I I I I I I I II I 11 I I
t t t t t t

0 4 8 12 16 20

TIME

d

(c) Output as in (b) with Higher z
Sampling Rate

_-_-::::::::::::::::::::::::::::::::
_---REQUANTIZATIO - ,--,

i i i111 i III I II I I I I I II
t t t t t t

0 4 8 12 16

TIME

2O

Figure C.1 Requantization with higher-sample rate
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The process of deriving the requantized signal from the input is not particularly

simple. Ultimately, at the cost of some memory use, and assuming fast enough memory
hardware, it may be feasible to store the set of all poss_le output words in a memory that

is addressed by the input data.
The method works because, in effect, the quantization noise is spread over a wider

spectrum, so that the portion of it in the bandwidth of interest is greatly reduced. In the

audio world, sampling frequencies of some tens of MHz are used with converters of a few
bits (or perhaps only I bit) to produce outputs with dynamic range in the order of 100 dB.
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